All Gram-negative bacteria studied to date have been shown to produce outer membrane vesicles (OMVs), which are budded, released spheres of outer membrane with periplasmic content. OMVs have been implicated in the delivery of virulence factors in pathogenesis. However, OMVs also benefit non-pathogenic species by delivering degradative enzymes to defend an ecological niche against competing bacterial species, and they can serve as an envelope stress response. Despite these important roles, there is very little known about the mechanism of production of OMVs. Here we review the advantage of vesiculation, particularly in a non-pathogenic context, as well as the hurdles that have to be overcome in Gram-negative envelope architecture before a vesicle can form and bud. Lastly, we address the question of whether OMV production is a stochastic or regulated process.
The ability to evaluate structural-functional relationships in real time has allowed scanning probe microscopy (SPM) to assume a prominent role in post genomic biological research. In this mini-review, we highlight the development of imaging and ancillary techniques that have allowed SPM to permeate many key areas of contemporary research. We begin by examining the invention of the scanning tunneling microscope (STM) by Binnig and Rohrer in 1982 and discuss how it served to team biologists with physicists to integrate high-resolution microscopy into biological science. We point to the problems of imaging nonconductive biological samples with the STM and relate how this led to the evolution of the atomic force microscope (AFM) developed by Binnig, Quate, and Gerber, in 1986. Commercialization in the late 1980s established SPM as a powerful research tool in the biological research community. Contact mode AFM imaging was soon complemented by the development of non-contact imaging modes. These non-contact modes eventually became the primary focus for further new applications including the development of fast scanning methods. The extreme sensitivity of the AFM cantilever was recognized and has been developed into applications for measuring forces required for indenting biological surfaces and breaking bonds between biomolecules. Further functional augmentation to the cantilever tip allowed development of new and emerging techniques including scanning ion-conductance microscopy (SICM), scanning electrochemical microscope (SECM), Kelvin force microscopy (KFM) and scanning near field ultrasonic holography (SNFUH).
Bacterial membrane vesicles have been implicated in a broad range of functions in microbial communities from pathogenesis to gene transfer. Though first thought to be a phenomenon associated with Gram-negative bacteria, vesicle production in Staphylococcus aureus, Lactobacillus plantarum, and other Gram-positives has recently been described. Given that many Lactobacillus species are Generally Regarded as Safe and often employed as probiotics, the engineering of Lactobacillus membrane vesicles presents a new avenue for the development of therapeutics and vaccines. Here we characterize and compare the membrane vesicles (MVs) from three different Lactobacillus species (L. acidophilus ATCC 53544, L. casei ATCC 393, and L. reuteri ATCC 23272), with the aim of developing future strategies for vesicle engineering. We characterize the vesicles from each Lactobacillus species comparing the physiochemical properties and protein composition of each. More than 80 protein components from Lactobacillus-derived MVs were identified, including some that were enriched in the vesicles themselves suggesting vesicles as a vehicle for antimicrobial delivery. Additionally, for each species vesicular proteins were categorized based on biological pathway and examined for subcellular localization signals in an effort to identify possible sorting mechanisms for MV proteins.
Chronic lung infections in cystic fibrosis patients are primarily caused by Pseudomonas aeruginosa. Though difficult to counteract effectively, colistin, an antimicrobial peptide, is proving useful. However, the exact mechanism of action of colistin is not fully understood. In this study, atomic force microscopy (AFM) was used to evaluate, in a liquid environment, the changes in P. aeruginosa morphology and nanomechanical properties due to exposure to colistin. The results of this work revealed that after 1 h of colistin exposure the ratio of individual bacteria to those found to be arrested in the process of division changed from 1.9 to 0.4 and the length of the cells decreased significantly. Morphologically, it was observed that the bacterial surface changed from a smooth to a wrinkled phenotype after 3 h exposure to colistin. Nanomechanically, in untreated bacteria, the cantilever indented the bacterial surface significantly more than it did after 1 h of colistin treatment (P-value = 0.015). Concurrently, after 2 h of exposure to colistin, a significant increase in the bacterial spring constant was also observed. These results indicate that the antimicrobial peptide colistin prevents bacterial proliferation by repressing cell division. We also found that treatment with colistin caused an increase in the rigidity of the bacterial cell wall while morphologically the cell surface changed from smooth to wrinkled, perhaps due to loss of lipopolysaccharides (LPS) or surface proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.