The hitherto unknown 2,6-hexadecadiynoic acid, 2,6-nonadecadiynoic acid, and 2,9-hexadecadiynoic acid were synthesized in two steps and in 11-18% overall yields starting from either 1,5-hexadiyne or 1,8-nonadiyne. Among all the compounds 2,6-hexadecadiynoic acid displayed the best overall antifungal activity against both the fluconazole-resistant Candida albicans strains ATCC 14053 and ATCC 60193, with a minimum inhibitory concentration (MIC of 11 microM), and against Cryptococcus neoformans ATCC 66031 (MIC < 5.7 microM). 2,9-Hexadecadiynoic acid did not display any significant cytotoxicity against the fluconazole-resistant C. albicans strains, but it showed fungitoxicity against C. neoformans ATCC 66031 with a MIC value of < 5.8 microM. Other FA, such as 2-hexadecynoic acid, 5-hexadecynoic acid, 9-hexadecynoic acid, and 6-nonadecynoic acid were also synthesized and their antifungal activities compared with those of the novel acetylenic FA. 2-Hexadecynoic acid, a known antifungal FA, exhibited the best antifungal activity (MIC = 9.4 microM) against the fluconazole-resistant C. albicans ATCC 14053 strain, but it showed a MIC value of only 100 microM against C. albicans ATCC 60193. 2,6-Hexadecadiynoic acid and 2-hexadecynoic acid also displayed a MIC of 140-145 microM toward Mycobacterium tuberculosis H37Rv in Middlebrook 7H12 medium. In conclusion, 2,6-hexadecadiynoic acid exhibited the best fungitoxicity profile compared with other analogues. This diynoic FA has the potential to be further evaluated for use in topical antifungal formulations.
The phospholipid fatty acid composition of Holothuria mexicana was investigated, and the novel 7-methyl-6-octadecenoic acid was identified. Structural characterization was accomplished by means of pyrrolidide derivatization and total synthesis. Other interesting phospholipid fatty acids in H. mexicana were 7-eicosenoic acid, 13-tricosenoic acid, 7-methyl-6-hexadecenoic acid, and 2-hydroxy-15-tetradecenoic acid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.