Sorafenib remains the only approved drug for treating patients with advanced hepatocellular carcinoma (HCC). However, the therapeutic effect of sorafenib is transient, and patients invariably develop sorafenib resistance (SR). Recently, TYRO3, a member of the TYRO3-AXL-MER family of receptor tyrosine kinases, was identified as being aberrantly expressed in a significant proportion of HCC; however, its role in SR is unknown. In this study, we generated two functionally distinct sorafenib-resistant human Huh-7 HCC cell lines in order to identify new mechanisms to abrogate acquired SR as well as new potential therapeutic targets in HCC. Initially, we investigated the effects of a microRNA (miR), miR-7-5p (miR-7), in both in vitro and in vivo preclinical models of human HCC and identified miR-7 as a potent tumor suppressor of human HCC. We identified TYRO3 as a new functional target of miR-7, which regulates proliferation, migration, and invasion of Huh-7 cells through the phosphoinositide 3-kinase/protein kinase B pathway and is markedly elevated with acquisition of SR. Furthermore, miR-7 effectively silenced TYRO3 expression in both sorafenib-sensitive and sorafenib-resistant Huh-7 cells, inhibiting TYRO3/growth arrest specific 6-mediated cancer cell migration and invasion. Conclusion: We identified a mechanism for acquiring SR in HCC that is through the aberrant expression of the TYRO3/phosphoinositide 3-kinase/protein kinase B signal transduction pathway, and that can be overcome by miR-7 overexpression. Taken together, these data suggest a potential role for miR-7 as an RNA-based therapeutic to treat refractory and drug-resistant HCC. (HEPATOLOGY 2018;67:216-231) L iver cancer ranks sixth among all malignancies in the world and is the second leading cause of cancer-related mortality. (1) The rising incidence of hepatocellular carcinoma (HCC), the most common primary malignant neoplasm of the liver, has been linked to hepatitis B or C infection and increasing worldwide obesity associated with fatty liver disease. (2) In 2017, it is estimated that 40,710 patients will be diagnosed with HCC in the United States, and more than 70% of them will eventually die from this
microRNA-7-5p (miR-7-5p) is a tumor suppressor in multiple cancer types and inhibits growth and invasion by suppressing expression and activity of the epidermal growth factor receptor (EGFR) signaling pathway. While melanoma is not typically EGFR-driven, expression of miR-7-5p is reduced in metastatic tumors compared to primary melanoma. Here, we investigated the biological and clinical significance of miR-7-5p in melanoma. We found that augmenting miR-7-5p expression in vitro markedly reduced tumor cell viability, colony formation and induced cell cycle arrest. Furthermore, ectopic expression of miR-7-5p reduced migration and invasion of melanoma cells in vitro and reduced metastasis in vivo. We used cDNA microarray analysis to identify a subset of putative miR-7-5p target genes associated with melanoma and metastasis. Of these, we confirmed nuclear factor kappa B (NF-κB) subunit RelA, as a novel direct target of miR-7-5p in melanoma cells, such that miR-7-5p suppresses NF-κB activity to decrease expression of canonical NF-κB target genes, including IL-1β, IL-6 and IL-8. Importantly, the effects of miR-7-5p on melanoma cell growth, cell cycle, migration and invasion were recapitulated by RelA knockdown. Finally, analysis of gene array datasets from multiple melanoma patient cohorts revealed an association between elevated RelA expression and poor survival, further emphasizing the clinical significance of RelA and its downstream signaling effectors. Taken together, our data show that miR-7-5p is a potent inhibitor of melanoma growth and metastasis, in part through its inactivation of RelA/NF-κB signaling. Furthermore, miR-7-5p replacement therapy could have a role in the treatment of this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.