Purpose of reviewVaping activity continues to increase worldwide. Promoted as a 'healthier' alternative to traditional smoking, emerging evidence indicates 'healthier' should not be confused with 'harmless'. Direct inhalation exposure of the respiratory tract in experimental research demonstrates pulmonary consequences of vaping. However, cardiovascular consequences of vaping are poorly characterized and are a priority area of research to reveal vaping-induced pathogenesis. Recent findings:Alterations in cardiovascular homeostasis, inflammation, and molecular changes following vaping exposure demonstrate vaping-related health concerns. Summary:This review summarizes cardiovascular consequences of vaping from cumulative research findings. Strategic application of emerging technologies to understand the impact of vaping upon the cardiovascular system will be essential for defining the true risks of vaping-associated injury.
Vaping of flavored liquids has been touted as safe alternative to traditional cigarette smoking with decreased health risks. The popularity of vaping has dramatically increased over the last decade, particularly among teenagers who incorporate vaping into their daily life as a social activity. Despite widespread and increasing adoption of vaping among young adults, there is little information on long-term consequences of vaping and potential health risks. This study demonstrates vaping-induced pulmonary injury using commercial JUUL pens with flavored vape juice using an inhalation exposure murine model. Profound pathological changes to upper airway, lung tissue architecture, and cellular structure are evident within 9 wk of exposure. Marked histologic changes include increased parenchyma tissue density, cellular infiltrates proximal to airway passages, alveolar rarefaction, increased collagen deposition, and bronchial thickening with elastin fiber disruption. Transcriptional reprogramming includes significant changes to gene families coding for xenobiotic response, glycerolipid metabolic processes, and oxidative stress. Cardiac systemic output is moderately but significantly impaired with pulmonary side ventricular chamber enlargement. This vaping-induced pulmonary injury model demonstrates mechanistic underpinnings of vaping-related pathologic injury.
Vaping of flavored liquids has been touted as safe alternative to traditional cigarette smoking with decreased health risks. The popularity of vaping has dramatically increased over the last decade, particularly among teenagers who incorporate vaping into their daily life as a social activity. Despite widespread and increasing adoption of vaping among young adults there is little information on long term consequences of vaping and potential health risks. This study demonstrates Vaping-Induced Pulmonary Injury (VAPI) using commercial JUUL pens with flavored vape juice using an inhalation exposure murine model. Profound pathological changes to upper airway, lung tissue architecture, and cellular structure are evident within 9 weeks of exposure. Marked histologic changes include increased parenchyma tissue density, cellular infiltrates proximal to airway passages, alveolar rarefaction, increased collagen deposition, and bronchial thickening with elastin fiber disruption. Transcriptional reprogramming includes significant changes to gene families coding for xenobiotic response, glycerolipid metabolic processes, and oxidative stress. Cardiac contractile performance for systemic output is moderately but significantly impaired, and the shows severe pulmonary side structural remodeling with chamber enlargement. This VAPI model with pulmonary circuit failure demonstrates mechanistic underpinnings of vaping-related pathologic injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.