Summary The biotechnological production of succinate bears serious potential to fully replace existing petrochemical approaches in the future. In order to establish an economically viable bioprocess, obtaining high titre, yield and productivity is of central importance. In this study, we present a straightforward engineering approach for anaerobic succinate production with Vibrio natriegens, consisting of essential metabolic engineering and optimization of process conditions. The final producer strain V. natriegens Δlldh Δdldh Δpfl Δald Δdns::pycCg (Succ1) yielded 1.46 mol of succinate per mol of glucose under anaerobic conditions (85% of the theoretical maximum) and revealed a particularly high biomass‐specific succinate production rate of 1.33 gSucc gCDW−1 h−1 compared with well‐established production systems. By applying carbon and redox balancing, we determined the intracellular flux distribution and show that under the tested conditions the reductive TCA as well as the oxidative TCA/glyoxylate pathway contributed to succinate formation. In a zero‐growth bioprocess using minimal medium devoid of complex additives and expensive supplements, we obtained a final titre of 60.4 gSucc l−1 with a maximum productivity of 20.8 gSucc l−1 h−1 and an overall volumetric productivity of 8.6 gSucc l−1 h−1 during the 7 h fermentation. The key performance indicators (titre, yield and productivity) of this first engineering approach in V. natriegens are encouraging and compete with costly tailored microbial production systems.
Vibrio natriegens is an emerging host for biotechnology due to its high growth and substrate consumption rates. In industrial processes typically fed‐batch processes are applied to obtain high space‐time yields. In this study, we established an aerobic glucose‐limited fed‐batch fermentation with the wild type (wt) of V. natriegens which yielded biomass concentrations of up to 28.4 gX L−1. However, we observed that the viscosity of the culture broth increased by a factor of 800 at the end of the cultivation due to the formation of 157 ± 20 mg exopolysaccharides (EPS) L−1. Analysis of the genomic repertoire revealed several genes and gene clusters associated with EPS formation. Deletion of the transcriptional regulator cpsR in V. natriegens wt did not reduce EPS formation, however, it resulted in a constantly low viscosity of the culture broth and altered the carbohydrate content of the EPS. A mutant lacking the cps cluster secreted two‐fold less EPS compared to the wt accompanied by an overall low viscosity and a changed EPS composition. When we cultivated the succinate producer V. natriegens Δlldh Δdldh Δpfl Δald Δdns::pycCg (Succ1) under anaerobic conditions on glucose, we also observed an increased viscosity at the end of the cultivation. Deletion of cpsR and the cps cluster in V. natriegens Succ1 reduced the viscosity five‐ to six‐fold which remained at the same level observed at the start of the cultivation. V. natriegens Succ1 ΔcpsR and V. natriegens Succ1 Δcps achieved final succinate concentrations of 51 and 46 g L−1 with a volumetric productivity of 8.5 and 7.7 gSuc L−1 h−1, respectively. Both strains showed a product yield of about 1.4 molSuc molGlc−1, which is 27% higher compared with that of V. natriegens Succ1 and corresponds to 81% of the theoretical maximum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.