The fluted giant clam, Tridacna squamosa, lives in symbiosis with zooxanthellae which reside extracellularly inside a tubular system. Zooxanthellae fix inorganic carbon (Ci) during insolation and donate photosynthate to the host. Carbonic anhydrases catalyze the interconversion of CO
2 and HCO3−, of which carbonic anhydrase 2 (CA2) is the most ubiquitous and involved in many biological processes. This study aimed to clone a CA2 homolog (CA2‐like) from the fleshy and colorful outer mantle as well as the thin and whitish inner mantle of T. squamosa, to determine its cellular and subcellular localization, and to examine the effects of light exposure on its gene and protein expression levels. The cDNA coding sequence of CA2‐like from T. squamosa comprised 789 bp, encoding 263 amino acids with an estimated molecular mass of 29.6 kDa. A phenogramic analysis of the deduced CA2‐like sequence denoted an animal origin. CA2‐like was not detectable in the shell‐facing epithelium of the inner mantle adjacent to the extrapallial fluid. Hence, CA2‐like is unlikely to participate directly in light‐enhanced calcification. By contrast, the outer mantle, which contains the highest density of tertiary tubules and zooxanthellae, displayed high level of CA2‐like expression, and CA2‐like was localized to the tubule epithelial cells. More importantly, exposure to light induced significant increases in the protein abundance of CA2‐like in the outer mantle. Hence, CA2‐like could probably take part in the increased supply of inorganic carbon (Ci) from the host clam to the symbiotic zooxanthellae when the latter conduct photosynthesis to fix Ci during light exposure.
A Dual-Domain Carbonic Anhydrase (DDCA) had been sequenced and characterized from the ctenidia (gills) of the giant clam, Tridacna squamosa, which lives in symbiosis with zooxanthellae. DDCA was expressed predominantly in the ctenidium. The complete cDNA coding sequence of DDCA from T. squamosa comprised 1,803 bp, encoding a protein of 601 amino acids and 66.7 kDa. The deduced DDCA sequence contained two distinct α-CA domains, each with a specific catalytic site. It had a high sequence similarity with tgCA from Tridacna gigas. In T. squamosa, the DDCA was localized apically in certain epithelial cells near the base of the ctenidial filament and the epithelial cells surrounding the tertiary water channels. Due to the presence of two transmembrane regions in the DDCA, one of the Zn2+-containing active sites could be located externally and the other one inside the cell. These results denote that the ctenidial DDCA was positioned to dehydrate HCO3- to CO2 in seawater, and to hydrate the CO2 that had permeated the apical membrane back to HCO3- in the cytoplasm. During insolation, the host clam needs to increase the uptake of inorganic carbon from the ambient seawater to benefit the symbiotic zooxanthellae; only then, can the symbionts conduct photosynthesis and share the photosynthates with the host. Indeed, the transcript and protein levels of DDCA/DDCA in the ctenidium of T. squamosa increased significantly after 6 and 12 h of exposure to light, respectively, denoting that DDCA could participate in the light-enhanced uptake and assimilation of exogenous inorganic carbon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.