Smooth muscle mitochondria are unique in their compartmentalization of metabolism with the contractile proteins and putative role in cell fate choice. In this study we examine the relative and quantitative differences that smooth muscle mitochondria have with regard to cyanide inhibition. The effect of cyanide poisoning in the mitochondria of smooth muscle was examined in the intact porcine carotid artery and intact guinea pig stomach. The respiratory responses of these tissues were monitored in the presence of cyanide and following the addition of various metabolites. In HEPES buffer with 10 mM glucose as the substrate, it was found that the EC 50 for cyanide inhibition was 0.11±0.02 and 0.14±0.02 mM in the pig carotid and guinea stomach respectively. We also found that the signaling metabolite, pyruvate could partially reverse this inhibition. With pyruvate (10 mM) as the substrate, the EC 50 increased significantly to 6.52±0.11 (carotid artery) and 1.95±0.30 (stomach) mM as well as being significantly different between the tissues. This apparent resistance to cyanide inhibition caused by pyruvate was lost when sodium bicarbonate buffer was used (EC 50 in the presence of pyruvate of 0.13±0.04 and 0.25±0.04 for carotid and stomach respectively). HEPES buffer permitted pyruvate's protection from cyanide poisoning whereas bicarbonate buffer did not. The rate of respiration caused by pyruvate re-stimulation was not significantly different than control in the stomach (2.63±0.77 and 2.69±0.3 µMol O 2 /min/g dw respectively) but was significantly greater in the carotid artery. Therefore, smooth muscle with 10 mM pyruvate and 1 mM cyanide had a rate or respiration significantly greater than with 10 mM glucose alone (0.90±0.2 and 0.59±0.06 µMol O 2 /min/g dw respectively). Using 31 P NMR spectroscopy, we observed a complete normalisation of high energy phosphates and pH in the guinea pig stomach smooth muscle caused by pyruvate after cyanide poisoning. These results suggest that cyanide's toxicity of smooth muscle oxidative metabolism is affected by the buffer (HEPES versus Bicarbonate) and metabolic signalling molecules or substrates (pyruvate versus glucose) in which the tissues are exposed to as well as tissue to tissue variations.
A small number of peptide growth factor ligands are used repeatedly in development and homeostasis to drive programs of cell differentiation and function. Cells and tissues must integrate inputs from these diverse signals correctly, while failure to do so leads to pathology, reduced fitness, or death. Previous work using the nematode C. elegans identified an interaction between the bone morphogenetic protein (BMP) and insulin/IGF-1-like signaling (IIS) pathways in the regulation of lipid homeostasis. The molecular components required for this interaction, however, were not known. Here we report that INS-4, one of 40 insulin-like peptides (ILPs), is specifically regulated by BMP signaling to modulate fat accumulation. Furthermore, we find that the IIS transcription factor DAF-16/FoxO, but not SKN-1/Nrf, acts downstream of BMP signaling in lipid homeostasis. Interestingly, BMP activity alters sensitivity of these two transcription factors to IIS-promoted cytoplasmic retention in opposite ways. Finally, we probe the extent of BMP and IIS interactions by testing two additional IIS functions, dauer formation and autophagy induction. Coupled with our previous work and that of other groups, we conclude that BMP and IIS pathways have at least three modes of interaction: independent, epistatic, and antagonistic.The molecular interactions we identify provide new insight into mechanisms of signaling crosstalk and potential therapeutic targets for IIS-related pathologies such as diabetes and metabolic syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.