Severe acute respiratory syndrome (SARS) and novel coronavirus disease (COVID-19) are caused by two closely related beta-coronaviruses, SARS-CoV and SARS-CoV-2, respectively. The envelopes surrounding these viruses are decorated with spike proteins, whose receptor binding domains (RBDs) initiate invasion by binding to the human angiotensin-converting enzyme 2 (ACE2). Subtle changes at the interface with ACE2 seem to be responsible for the enhanced affinity for the receptor of the SARS-CoV-2 RBD compared to SARS-CoV RBD. Here, we use Elastic Network Models (ENMs) to study the response of the viral RBDs and ACE2 upon dissassembly of the complexes. We identify a dominant detachment mode, in which the RBD rotates away from the surface of ACE2, while the receptor undergoes a conformational transition which stretches the active-site cleft. Using the Structural Perturbation Method, we determine the network of residues, referred to as the Allostery Wiring Diagram (AWD), which drives the large-scale motion activated by the detachment of the complex. The AWD for SARS-CoV and SARS-CoV-2 are remarkably similar, showing a network that spans the interface of the complex and reaches the active site of ACE2, thus establishing an allosteric connection between RBD binding and receptor catalytic function. Informed in part by the AWD, we used Molecular Dynamics simulations to probe the effect of interfacial mutations in which SARS-CoV-2 residues are replaced by their SARS-CoV counterparts. We focused on a conserved glycine (G502 in SARS-CoV-2, G488 in SARS-CoV) because it belongs to a region that initiates the dissociation of the complex along the dominant detachment mode, and is prominent in the AWD. Molecular Dynamics simulations of SARS-CoV-2 wild-type and G502P mutant show that the affinity for the human receptor of the mutant is drastically diminished. Our results suggest that in addition to residues that are in direct contact with the interface those involved in long range allosteric communication are also a determinant of the stability of the RBD-ACE2 complex.
Using computer simulations we consider the balance of thermodynamic forces that collapse RNA. A model helix-junction-helix (HJH) construct is used to investigate the transition from an extended to a collapsed conformation. Conventional Molecular Dynamics and Milestoning simulations are used to study the free energy profile of the process for two ion concentrations. We illustrate that HJH folds to a collapsed state with two types of counter ions (Mg2+ and K+). By dissecting the free energy landscape into energetic and entropic contributions we illustrate that the electrostatic forces between the RNA and the mobile ions do not drive the RNA to a collapsed state. Instead, entropy gains from water expulsion near the neighborhood of the RNA provide the stabilization free energy that tilt HJH into more compact structures. Further simulations of a three-helix hammerhead ribozyme show a similar behavior and support the idea of collapse due to increased gain in water entropy.
The calculation of minimum energy or minimum free energy paths is an important step in the quantitative and qualitative studies of chemical and physical processes. The computations of these coordinates present a significant challenge and have attracted considerable theoretical and computational interest. Here we present a new local-global approach to study reaction coordinates, based on a gradual optimization of an action. Like other global algorithms, it provides a path between known reactants and products, but it uses a local algorithm to extend the current path in small steps. The local-global approach does not require an initial guess to the path, a major challenge for global pathway finders. Finally, it provides an exact answer (the steepest descent path) at the end of the calculations. Numerical examples are provided for the Mueller potential and for a conformational transition in a solvated ring system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.