Persistent deficits in social behavior are among the major negative consequences associated with exposure to ethanol during prenatal development. Prior work from our laboratory has linked deficits in social behavior following moderate prenatal alcohol exposure (PAE) in the rat to functional alterations in the ventrolateral frontal cortex [21]. In addition to social behaviors, the regions comprising the ventrolateral frontal cortex are critical for diverse processes ranging from orofacial motor movements to flexible alteration of behavior in the face of changing consequences. The broader behavioral implications of altered ventrolateral frontal cortex function following moderate PAE have, however, not been examined. In the present study we evaluated the consequences of moderate PAE on social behavior, tongue protrusion, and flexibility in a variant of the Morris water task that required modification of a well-established spatial response. PAE rats displayed deficits in tongue protrusion, reduced flexibility in the spatial domain, increased wrestling, and decreased investigation, indicating that several behaviors associated with ventrolateral frontal cortex function are impaired following moderate PAE. A linear discriminant analysis revealed that measures of wrestling and tongue protrusion provided the best discrimination of PAE rats from saccharin-exposed control rats. We also evaluated all behaviors in young adult (4-5 mos.) or older (10-11 mos.) rats to address the persistence of behavioral deficits in adulthood and possible interactions between early ethanol exposure and advancing age. Behavioral deficits in each domain persisted well into adulthood (10-11 mos.), however, there was no evidence that age enhances the effects of moderate PAE within the age ranges that were studied.
The KH-type splicing regulatory protein (KSRP) promotes the decay of AU-rich element (ARE)-containing mRNAs. Although KSRP is expressed in the nervous system, very little is known about its role in neurons. In this study, we examined whether KSRP regulates the stability of the ARE-containing GAP-43 mRNA. We found that KSRP destabilizes this mRNA by binding to its ARE, a process that requires the presence of its fourth KH domain (KH4). Furthermore, KSRP competed with the stabilizing factor HuD for binding to these sequences. We also examined the functional consequences of KSRP overexpression and knockdown on the differentiation of primary hippocampal neurons in culture. Overexpression of full length KSRP or KSRP without its nuclear localization signal hindered axonal outgrowth in these cultures, while overexpression of a mutant protein without the KH4 domain that has less affinity for binding to GAP-43′s ARE had no effect. In contrast, depletion of KSRP led to a rise in GAP-43 mRNA levels and a dramatic increase in axonal length, both in KSRP shRNA transfected cells and neurons cultured from Ksrp+/− and Ksrp −/−embryos. Finally we found that overexpression of GAP-43 rescued the axonal outgrowth deficits seen with KSRP overexpression, but only when cells were transfected with GAP-43 constructs containing 3′ UTR sequences targeting the transport of this mRNA to axons. Together, our results suggest that KSRP is an important regulator of mRNA stability and axonal length that works in direct opposition to HuD to regulate the levels of GAP-43 and other ARE-containing neuronal mRNAs.
Complex regulation of brain-derived neurotrophic factor (BDNF) governs its intricate functions in brain development and neuronal plasticity. Besides tight transcriptional control from multiple distinct promoters, alternative 3′end processing of the BDNF transcripts generates either a long or a short 3′untranslated region (3′UTR). Previous reports indicate that distinct RNA sequence in the BDNF 3′UTRs differentially regulates BDNF production in the brain to accommodate neuronal activity changes, conceivably through differential interactions with undefined trans-acting factors that regulate stability and translation of these BDNF mRNA isoforms. In this study, we report that the neuronal RNA-binding protein (RBP) HuD interacts with a highly conserved AU-rich element (ARE) specifically located in the BDNF long 3′UTR. Such interaction is necessary and sufficient for selective stabilization of mRNAs that contain the BDNF long 3′UTR in vitro and in vivo. Moreover, in a HuD transgenic mouse model, the BDNF long 3′UTR mRNA is increased in the hippocampal dentate granule cells (DGCs), leading to elevated expression of BDNF protein that is transported and stored in the mossy fiber (MF) terminals. Our results identify HuD as the first trans-acting factor that enhances BDNF expression specifically through the long 3′UTR and a novel mechanism that regulates BDNF protein production in selected neuronal populations by HuD abundance.
Developmental exposure to ethanol leads to a constellation of cognitive and behavioral abnormalities known as Fetal Alcohol Spectrum Disorders (FASDs). Many cell types throughout the central nervous system are negatively impacted by gestational alcohol exposure, including inhibitory, GABAergic interneurons. Little evidence exists, however, describing the long-term impact of fetal alcohol exposure on survival of interneurons within the hippocampal formation, which is critical for learning and memory processes that are impaired in individuals with FASDs. Mice expressing Venus yellow fluorescent protein in inhibitory interneurons were exposed to vaporized ethanol during the third trimester equivalent of human gestation (postnatal days 2-9), and the long-term effects on interneuron numbers were measured using unbiased stereology at P90. In adulthood, interneuron populations were reduced in every hippocampal region examined. Moreover, we found that a single exposure to ethanol at P7 caused robust activation of apoptotic neurodegeneration of interneurons in the hilus, granule cell layer, CA1 and CA3 regions of the hippocampus. These studies demonstrate that developmental ethanol exposure has a long-term impact on hippocampal interneuron survivability, and may provide a mechanism partially explaining deficits in hippocampal function and hippocampus-dependent behaviors in those afflicted with FASDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.