We adapt tools of transformation optics, governed by a (elliptic) wave equation, to thermodynamics, governed by the (parabolic) heat equation. We apply this new concept to an invibility cloak in order to thermally protect a region (a dead core) and to a concentrator to focus heat flux in a small region. We finally propose a multilayered cloak consisting of 20 homogeneous concentric layers with a piecewise constant isotropic diffusivity working over a finite time interval (homogenization approach).
We present a finite element analysis of a diffusion problem involving a coated cylinder enabling the rotation of heat fluxes. The coating consists of a heterogeneous anisotropic conductivity deduced from a geometric transformation in the time dependent heat equation. In contrast to thermal cloak and concentrator, specific heat and density are not affected by the transformation in the rotator. Therein, thermal flux diffuses from region of lower temperature to higher temperature, leading to an apparent negative conductivity analogous to what was observed in transformed thermostatics. When a conducting object lies inside the rotator, it appears as if rotated by certain angle to an external observer, what can be seen as a thermal illusion. A structured rotator is finally proposed inspired by earlier designs of thermostatic and microwave rotators.
Electromagnetic theory is used to calculate the gradual loss of polarization in light scattering from surface roughness. The receiver aperture is taken into account by means of a multiscale spatial averaging process. The polarization degrees are connected with the structural parameters of surfaces.
Accurate threshold curves of laser-induced damage (7-ns single shot at 1.064 microm) are measured in bulk and at the surfaces of optical components such as substrates, thin films, multilayers, and liquids. The shapes and the slopes of the curves are related to the spot size and to the densities of the nanodefects that are responsible for damage. First, these densities are reported for bulk substrates. In surfaces and films the recorded extrinsic and intrinsic threshold curves permit the discrimination of the effects of microdefects and nanodefects. In all cases the density of nanocenters is extracted by means of a phenomenological approach. Then we test liquids and mixtures of liquids with controlled defect densities. The results emphasize the agreement between measurement and prediction and demonstrate the validity of the presence of different kinds of nanocenter as the precursors of laser damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.