Objective
With the replacement of karyotyping by chromosomal microarray (CMA) in invasive prenatal diagnosis, new challenges have arisen. By building a national database, we standardize the classification and reporting of prenatally detected copy number variants (CNVs) across Belgian genetic centers. This database, which will link genetic and ultrasound findings with postnatal development, forms a unique resource to investigate the pathogenicity of variants of uncertain significance and to refine the phenotypic spectrum of pathogenic and susceptibility CNVs.
Methods
The Belgian MicroArray Prenatal (BEMAPRE) consortium is a collaboration of all genetic centers in Belgium. We collected data from all invasive prenatal procedures performed between May 2013 and July 2016.
Results
In this three‐year period, 13 266 prenatal CMAs were performed. By national agreement, a limited number of susceptibility CNVs and no variants of uncertain significance were reported. Added values for using CMA versus conventional karyotyping were 1.8% in the general invasive population and 2.7% in cases with an ultrasound anomaly. Of the reported CNVs, 31.5% would have remained undetected with non‐invasive prenatal test as the first‐tier test.
Conclusion
The establishment of a national database for prenatal CNV data allows for a uniform reporting policy and the investigation of the prenatal and postnatal genotype–phenotype correlation.
Interstitial duplications of the short arm of chromosome 2 have been rarely described. Here, we report on two unrelated patients with overlapping chromosome 2p16 → p22 de novo microduplications found by SNP-array analysis. The affected individuals were an 8-year-3-month-old boy with a direct duplication of approximately 14.6 Mb harboring 63 genes, and a 12-year-old girl with a direct duplication of around 9.6 Mb harboring 48 genes. Both patients have severe growth retardation, delayed bone age, prominent veins on trunk and extremities, total IGF1 level in the low range, mild developmental delay, and facial dysmorphism such as relative macrocephaly, a broad and prominent forehead, and a large anterior fontanelle. Comparison with patients previously reported in the literature and in the DECIPHER 5.1 and ECARUCA databases indicates a common region of interest of around 1.9 Mb responsible for most of the features. Two candidate genes (EPAS and RHOQ), may be particularly relevant for the marked growth retardation and developmental delay.
In approximately 90% of mild haemophilia A (HA) patients, a missense mutation can be identified using complete gene sequencing. In this study, multiplex ligation-dependent probe amplification analysis was performed as a second step in 10 French-speaking Belgian with mild HA presenting no detectable causal mutation by complete sequencing of the factor VIII (FVIII) (F8) gene's 26 exons and its 1.2 kb of contiguous promoter sequence. This gene dosage technique enabled the detection of exon 1 duplications of F8 in three apparently unrelated subjects. Using array-comparative genomic hybridization, breakpoint analysis delimited the duplication extent to 210 kb in the F8 intron 1 and VBP1 gene intragenic position. We postulated that the rearrangement responsible for this duplication, never before reported, could be attributed to a symmetrical tandem inversion duplication, resulting in a large 233 kb rearrangement of F8 intron 1. This rearranged intron should lead to the production of a small number of normal mRNA transcripts in relation to the mild HA phenotype. Our analysis of the entire F8 mRNA from index case 1, particularly the segment containing exons 1-9, revealed normal amplification and sequencing. Reduced plasma FVIII antigen levels caused by cross-reacting material is associated with a quantitative deficiency of plasma FVIII. Male patients were unresponsive to desmopressin (1-deamino-8-D-arginine vasopressin). All patients displayed identical F8 haplotypes, despite not being related, which suggests a possible founder effect caused by a 210 kb duplication involving F8 exon 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.