We study a class of first order quasilinear equations on bounded domains in the L ∞ framework. Using the "semi Kružkov entropy-flux pairs", we define a weak-entropy solution, state an existence and uniqueness result, and a maximum principle.
To the memory of R. J. DiPerna.
AbstractUsing relative entropy estimates about an absolute Maxwellian, it is shown that any properly scaled sequence of DiPerna-Lions renormalized solutions of some classical Boltzmann equations has fluctuations that converge to an infinitesimal Maxwellian with fluid variables that satisfy the incompressibility and Boussinesq relations. Moreover, if the initial fluctuations entropically converge to an infinitesimal Maxwellian then the limiting fluid variables satisfy a version of the Leray energy inequality. If the sequence satisfies a local momentum conservation assumption, the momentum densities globaly converge to a solution of the Stokes equation. A similar discrete time version of this result holds for the Navier-Stokes limit with an additional mild weak compactness assumption. The continuous time Navier-Stokes limit is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.