Some very impressive results have been obtained in the past few years in plants and trees image synthesis. Some algorithms are largely based on the irregularity and fuzziness of the objects, and use fractals, graftals or particle systems. Others focus on the branching pattern of the trees with emphasis on morphology. Our concern here is the faithfulness of the models to the botanical nature of trees and plants. We present a model which integrates botanical knowledge of the architecture of the trees: how they grow, how they occupy space, where and how leaves,flowers or fruits are located, etc. The very first interest of the model we propose is its great richness: the same procedural methods can produce "plants" as different as weeping willows, fir trees, cedar trees, frangipani trees, poplars, pine trees, wild cherry trees, herbs, etc. Another very important benefit one can deriw from the model is the integration of time which enables viewing the aging of a tree (possibility to get different pictures of the same tree at different ages, accurate simulation of the death of leaves and branches for example). The ease to integrate physical parameters such as wind, the incidence of factors such as insects attacks, use of fertilizers, plantation density, and so on makes it a useful tool for agronomy or botany.
Some very impressive results have been obtained in the past few years in plants and trees image synthesis. Some algorithms are largely based on the irregularity and fuzziness of the objects, and use fractals, graftals or particle systems. Others focus on the branching pattern of the trees with emphasis on morphology. Our concern here is the faithfulness of the models to the botanical nature of trees and plants. We present a model which integrates botanical knowledge of the architecture of the trees: how they grow, how they occupy space, where and how leaves, flowers or fruits are located, etc. The very first interest of the model we propose is its great richness: the same procedural methods can produce "plants" as different as weeping willows, fir trees, cedar trees, frangipani trees, poplars, pine trees, wild cherry trees, herbs, etc. Another very important benefit one can derive from the model is the integration of time which enables viewing the aging of a tree (possibility to get different pictures of the same tree at different ages, accurate simulation of the death of leaves and branches for example). The ease to integrate physical parameters such as wind, the incidence of factors such as insects attacks, use of fertilizers, plantation density, and so on makes it a useful tool for agronomy or botany.
Since 1970, the architectural analysis of woody plants has given much information about structural and functional organization of tree crowns, their development, and reiteration patterns. In this study, we have extended this method to tree root systems. We describe the whole architecture of three species and we compare their root system and crown architectural patterns. Key words: architecture, tree, root system, crown, whole plant.
Summary Broad‐scale evolutionary comparisons have shown that branching forms arose by convergence in vascular plants and bryophytes, but the trajectory of branching form diversification in bryophytes is unclear. Mosses are the most species‐rich bryophyte lineage and two sub‐groups are circumscribed by alternative reproductive organ placements. In one, reproductive organs form apically, terminating growth of the primary shoot (gametophore) axis. In the other, reproductive organs develop on very short lateral branches. A switch from apical to lateral reproductive organ development is proposed to have primed branching form diversification.Moss gametophores have modular development and each module develops from a single apical cell. Here we define the architectures of 175 mosses by the number of module classes, branching patterns and the pattern in which similar modules repeat. Using ancestral character state reconstruction we identify two stages of architectural diversification.During a first stage there were sequential changes in the module repetition pattern, reproductive organ position, branching pattern and the number of module classes. During a second stage, vegetative changes occurred independently of reproductive fate.The results pinpoint the nature of developmental change priming branching form diversification in mosses and provide a framework for mechanistic studies of architectural diversification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.