SUMMARYPurpose: Removal of areas generating high-frequency oscillations (HFOs) recorded from the intracerebral electroencephalography (iEEG) of patients with medically intractable epilepsy has been found to be correlated with improved surgical outcome. However, whether differences exist according to the type of epilepsy is largely unknown. We performed a comparative assessment of the impact of removing HFO-generating tissue on surgical outcome between temporal lobe epilepsy (TLE) and extratemporal lobe epilepsy (ETLE). We also assessed the relationship between the extent of surgical resection and surgical outcome. Methods: We studied 30 patients with drug-resistant focal epilepsy, 21 with TLE and 9 with ETLE. Two thirds of the patients were included in a previous report and for these, clinical and imaging data were updated and followup was extended. All patients underwent iEEG investigations (500 Hz high-pass filter and 2,000 Hz sampling rate), surgical resection, and postoperative magnetic resonance imaging (MRI). HFOs (ripples, 80-250 Hz; fast ripples, >250 Hz) were identified visually on a 5-10 min interictal iEEG sample. HFO rates inside versus outside the seizure-onset zone (SOZ), in resected versus nonresected tissue, and their association with surgical outcome (ILAE classification) were assessed in the entire cohort, and in the TLE and ETLE subgroups. We also tested the correlation of resected brain hippocampal and amygdala volumes (as measured on postoperative MRIs) with surgical outcome. Key Findings: HFO rates were significantly higher inside the SOZ than outside in the entire cohort and TLE subgroup, but not in the ETLE subgroup. In all groups, HFO rates did not differ significantly between resected and nonresected tissue. Surgical outcome was better when higher HFO rates were included in the surgical resection in the entire cohort and TLE subgroup, but not in the ETLE subgroup. Resected brain hippocampal and amygdala volumes were not correlated with surgical outcome. Significance: In TLE, removal of HFO-generating areas may lead to improved surgical outcome. Less consistent findings emerge from ETLE, but these may be related to sample size limitations of this study. Size of resection, a factor that was ignored and that could have affected results of earlier studies did not influence results.
Prehabilitation is defined as the process of augmenting functional capacity before surgery in preparation for the postoperative phase. This study intends to assess the feasibility of conducting a preoperative intervention program in patients with lumbar spinal stenosis and to report on the piloting of the proposed intervention. Patients were allocated to a 6-week supervised preoperative rehabilitation program or a control group. The intervention included supervised exercise sessions aimed to improve strength, muscular endurance, and spinal stabilization. Outcomes were measured at baseline, 6 weeks later and again 6 weeks, 3 months and 6 months after surgery. Sixty-five percent of admissible participants agreed to take part in the study, of which 5% dropped out before the end of the intervention period. Eighty-eight percent of potential training sessions were delivered without adverse event. Improvements were seen in favour of the experimental group at the preoperative assessment for active ranges of motion, leg pain intensity, lumbar extensor muscle endurance and walking capacities. Results show that slight modifications to the choice of outcome measures would increase feasibility of the main study. The absence of adverse events coupled with positive changes seen in dependant outcome measures warrant the conduct of a full-scale trial assessing the effectiveness of the intervention.
Objective-High frequency oscillations (HFOs) have been implicated in ictogenesis and epileptogenesis. The effect of contact size (in the clinical range: 1-10 mm 2 ) on HFO detection has not been determined. This study assesses the feasibility of HFO detection in a rat epilepsy model using macrocontacts and clinical amplifiers, and the effect of contact size on HFO detection within the macrocontact range.Methods-Eight epileptic rats were implanted with intracerebral electrodes containing three adjacent contacts of different sizes (0.02, 0.05 and 0.09 mm 2 ). HFOs were manually marked on 5 min interictal EEG segments. HFO rates and durations were compared between the different contacts.Results-10,966 ripples and 1475 fast ripples were identified in the recordings from 30 contacts. There were no significant differences in spike or HFO rates between the different contact sizes, nor was there a significant difference in HFO duration.Conclusions-HFOs can be detected in a rat epilepsy model using macrocontacts. Within the studied range, size did not significantly influence HFO detection.Significance-Using comparative anatomy of rat and human limbic structures, these findings suggest that reducing the size of macrocontacts (compared to those commercially available) would not improve HFO detection rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.