Although the security of Cyber-Physical Systems (CPS) has been recently receiving significant attention from the research community, undoubtedly, there still exists a substantial lack of a comprehensive and a holistic understanding of attackers' malicious strategies, aims and intentions. To this end, this paper uniquely exploits passive monitoring and analysis of a newly deployed network telescope IP address space in a first attempt ever to build broad notions of real CPS maliciousness. Specifically, we approach this problem by inferring, investigating, characterizing and reporting large-scale probing activities that specifically target more than 20 diverse, heavily employed CPS protocols. To permit such analysis, we initially devise and evaluate a novel probabilistic model that aims at filtering noise that is embedded in network telescope traffic. Subsequently, we generate amalgamated statistics, inferences and insights characterizing such inferred scanning activities in terms of their probe types, the distribution of their sources and their packets' headers, among numerous others, in addition to examining and visualizing the co-occurrence patterns of such events. Further, we propose and empirically evaluate an innovative hybrid approach rooted in time-series analysis and context triggered piecewise hashing to infer, characterize and cluster orchestrated and well-coordinated probing activities targeting CPS protocols, which are generated from Internet-scale unsolicited sources. Our analysis and evaluations, which draw upon extensive network telescope data observed over a recent one month period, demonstrate a staggering 33 thousand probes towards ample of CPS protocols, the lack of interest in UDP-based CPS services, and the prevalence of probes towards the ICCP and Modbus protocols. Additionally, we infer a considerable 74% of CPS probes that were persistent throughout the entire analyzed period targeting prominent protocols such as DNP3 and BACnet. Further, we uncover close to 9 thousand large-scale, stealthy, previously undocumented orchestrated probing events targeting a number of such CPS protocols. We validate the various outcomes through cross-validations against publicly available threat repositories. We concur that the devised approaches, techniques, and methods provide a solid first step towards better comprehending real CPS unsolicited objectives and intents. Permission to freely reproduce all or part of this paper for noncommercial purposes is granted provided that copies bear this notice and the full citation on the first page. Reproduction for commercial purposes is strictly prohibited without the prior written consent of the Internet Society, the first-named author (for reproduction of an entire paper only), and the author's employer if the paper was prepared within the scope of employment.
The proliferation of ransomware has become a significant threat to cybersecurity in recent years, causing significant financial, reputational, and operational damage to individuals and organizations. This paper aims to provide a comprehensive overview of the evolution of ransomware, its taxonomy, and its state-of-the-art research contributions. We begin by tracing the origins of ransomware and its evolution over time, highlighting the key milestones and major trends. Next, we propose a taxonomy of ransomware that categorizes different types of ransomware based on their characteristics and behavior. Subsequently, we review the existing research over several years in regard to detection, prevention, mitigation, and prediction techniques. Our extensive analysis, based on more than 150 references, has revealed that significant research, specifically 72.8%, has focused on detecting ransomware. However, a lack of emphasis has been placed on predicting ransomware. Additionally, of the studies focused on ransomware detection, a significant portion, 70%, have utilized machine learning methods. We further discuss the challenges found such as the ones related to obtaining ransomware datasets. In addition, our study uncovers a range of shortcomings in research pertaining to real-time protection and identifying zero-day ransomware. Adversarial machine learning exploitation has been identified as an under-researched area in the field. This survey is a constructive roadmap for researchers interested in ransomware research matters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.