We have, within the framework of the molecular mechanics method SIBFA, improved the formulation of the Coulomb (electrostatic) energy contribution to the intermolecular interaction energy. This was done by integrating "overlap-like" terms into two components of the multipolar development used to calculate this contribution in SIBFA. The calibration of the new component is done on five water dimers by fitting this augmented electrostatic contribution to the corresponding Ec term. Several tests are done on (i) representative neutral and ionic hydrogen-bonded complexes; (ii) the complexes of metal cations (Cu(I) and Cu(II)) with a neutral or an anionic ligand; and (iii) a representative stacked complex. The improvement brought by the new formulation reduces the difference between the ab initio (Ec) and molecular mechanics (EMTP*) values by almost an order of magnitude when compared to the values of EMTP calculated using the standard method.
Intermolecular interaction energy decompositions using the Constrained Space Orbital Variation (CSOV) method are carried out at the Hartree-Fock level on the one hand and using DFT with usual GGA functionals on the other for a number of model complexes to analyze the role of electron correlation in the intermolecular stabilization energy. In addition to the overall stabilization, the results provide information on the variation, with respect to the computational level, of the different contributions to the interaction energy. The complexes studied are the water linear dimer, the N-methylformamide dimer, the nucleic acid base pairs, the benzene-methane and benzene-N2 van der Waals complexes, [Cu+ -(ImH)3]2, where "ImH" stands for the Imidazole ligand, and ImH-Zn++. The variation of the frozen core energy (the sum of the intermolecular electrostatic energy and the Pauli repulsion energy) calculated from the unperturbed orbitals of the interacting entities indicates that the intramolecular correlation contributions can be stabilizing as well as destabilizing, and that general trends can be derived from the results obtained using usual density functionals. The most important difference between the values obtained from HF and DFT computations concerns the charge transfer contribution, which, in most cases, undergoes the largest increase. The physical meaning of these results is discussed. The present work gives reference calculations that might be used to parametrize new correlated molecular mechanics potentials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.