A membrane polypeptide involved in K+ transport in a higher plant was cloned by complementation of a yeast mutant defective in K+ uptake with a complementary DNA library from Arabidopsis thaliana. A 2.65-kilobase complementary DNA conferred ability to grow on media with K+ concentration in the micromolar range and to absorb K+ (or 86Rb+) at rates similar to those in wild-type yeast. The predicted amino acid sequence (838 amino acids) has three domains: a channel-forming region homologous to animal K+ channels, a cyclic nucleotide-binding site, and an ankyrin-like region.
AKT1, a putative inwardly directed K+ channel of Arabidopsis, restores long-term potassium uptake in a yeast mutant defective in K+ absorption. In this paper, the expression pattern of the gene encoding AKT1 is described. Northern blots indicate that AKT1 transcripts are preferentially accumulated in Arabidopsis roots. Owing to the difficulties in producing large quantities of Arabidopsis roots under hydroponic conditions, experiments were undertaken with Brassica napus, a related species. Potassium starvation experiments on B. napus plants show that changes in the K+ status of the organs do not modify AKT1 mRNA accumulation. Western blot analysis of B. napus proteins confirms the presence of AKT1 at the root plasma membrane. Tissue-specific expression directed by the Arabidopsis AKT1 gene promoter was investigated by analysis of beta-glucuronidase (GUS) activity in transgenic Arabidopsis containing an AKT1-GUS gene fusion. As determined by fluorimetric and histochemical tests, the AKT1 promoter directs preferential expression in the peripheral cell layers of root mature regions. The discrete activity found in leaves relates to leaf primordia and to small groups of cells, hydathodes, found on toothed margins of the Arabidopsis leaf lamina. These data are discussed with regard to a possible role of AKT1 in K+ nutrition of plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.