Objectives: To investigate the role of reactive oxygen species (ROS) in the development of the various patterns of systemic sclerosis (SSc) and the mechanisms of ROS production by endothelial cells and fibroblasts. Methods: Production of hydrogen peroxide (H 2 O 2 ), nitric oxide (NO) and cellular proliferation were determined following incubation of endothelial cells and fibroblasts with 56 SSc and 30 healthy sera. Correlations were established between those markers, the type and the severity of the clinical involvements, and the response to treatment. The factors leading to ROS production were determined. Results: H 2 O 2 production by endothelial cells and fibroblasts was higher after incubation with SSc sera than with normal sera (p,0.001) and with sera from SSc patients with severe complications than sera from other patients (p,0.05). Sera from patients with lung fibrosis triggered the proliferation of fibroblasts more than other SSc sera (p,0.001), whereas sera from patients with vascular complications exerted no proliferative effect on fibroblasts, but inhibited endothelial cell growth (p,0.05) and induced NO overproduction (p,0.05). Bosentan reduced NO release by 32%, whereas N-acetylcystein potentiated 5-fluorouracil (5FU) to inhibit fibroblast proliferation by 78%. Those serum-mediated effects did not involve antibodies but advanced oxidation protein products that selectively triggered cells to produce H 2 O 2 or NO. Conclusions: SSc sera induce the production of different types of ROS that selectively activate endothelial cells or fibroblasts, leading to vascular or fibrotic complications. Assaying serum-induced ROS production allows clinical activity of the disease to be followed and appropriate treatments to be selected.
We confirm that most streptavidin-biotin hormone immunoassays are affected by high biotin concentrations, leading to a risk of misdiagnosis. Our simple neutralization method efficiently suppresses biotin interference.
Early diagnosis of acute mesenteric ischemia (AMI) remains a clinical challenge, and no biomarker has been consistently validated. We aimed to assess the accuracy of three promising circulating biomarkers for diagnosing AMI—citrulline, intestinal fatty acid-binding protein (I-FABP), and d-lactate. A cross-sectional diagnostic study enrolled AMI patients admitted to the intestinal stroke center and controls with acute abdominal pain of another origin. We included 129 patients—50 AMI and 79 controls. Plasma citrulline concentrations were significantly lower in AMI patients compared to the controls [15.3 μmol/L (12.0–26.0) vs. 23.3 μmol/L (18.3–29.8), p = 0.001]. However, the area under the receiver operating curves (AUROC) for the diagnosis of AMI by Citrulline was low: 0.68 (95% confidence interval = 0.58–0.78). No statistical difference was found in plasma I-FABP and plasma d-lactate concentrations between the AMI and control groups, with an AUROC of 0.44, and 0.40, respectively. In this large cross-sectional study, citrulline, I-FABP, and d-lactate failed to differentiate patients with AMI from patients with acute abdominal pain of another origin. Further research should focus on the discovery of new biomarkers.
The diagnostic of orphan genetic disease is often a puzzling task as less attention is paid to the elucidation of the pathophysiology of these rare disorders at the molecular level. We present here a multidisciplinary approach using molecular modeling tools and surface plasmonic resonance to study the function of the ATP7B protein, which is impaired in the Wilson disease. Experimentally validated in silico models allow the elucidation in the Nucleotide binding domain (N-domain) of the Mg2+-ATP coordination site and answer to the controversial role of the Mg2+ ion in the nucleotide binding process. The analysis of protein motions revealed a substantial effect on a long flexible loop branched to the N-domain protein core. We demonstrated the capacity of the loop to disrupt the interaction between Mg2+-ATP complex and the N-domain and propose a role for this loop in the allosteric regulation of the nucleotide binding process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.