The catalytic properties of the diiron complex 1, Fe(2)OL(4)(H(2)O)(2)(ClO(4))(4) with L = (-)-4,5-pinenebipyridine, a chiral bipyridine derivative, have been investigated. Complex 1 efficiently catalyzes the oxidation of aryl sulfides to the corresponding sulfoxides by hydrogen peroxide, with yields ranging from 45 to 90% based on the oxidant. Furthermore the reactions were enantioselective and produced a mixture of sulfoxide enantiomers with significant enantiomeric excesses. The largest ee value (40%) was found in the case of p-bromophenyl methyl sulfide. Optimal ee's were obtained in polar solvents and at low temperature (below 0 degrees C), when the excess of the oxidant was limited. The observation of (i) a saturation kinetics with respect to both sulfide and H(2)O(2) concentrations, (ii) a linear Hammett correlation of the initial V(max) values with sigma(p) values, for a series of p-substituted aryl methyl sulfides, (iii) iron-peroxo complexes, characterized by light absorption and Raman resonance spectroscopies, during reaction of complex 1 with H(2)O(2), and (iv) a saturation kinetics with respect to sulfide during oxidation of sulfide into sulfoxide by the iron-peroxo complexes led us to propose that the iron-peroxo moiety is the actual oxygen atom donor to the substrate, thus explaining the enantioselective control of the catalytic reaction. These data demonstrate that oxidations by non heme diiron complexes can proceed through metal-based pathways and can thus be made stereoselective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.