Scavenger receptor class B, type I (SR-BI), the Scarb1 gene product, is a receptor associated with cholesteryl ester uptake from high-density lipoproteins (HDL), which drives cholesterol movement from peripheral tissues toward the liver for excretion, and, consequently, Scarb1 null mice are prone to atherosclerosis. Because studies have linked atherosclerosis incidence with osteoporosis, we characterized the bone metabolism in these mice. Bone morphometry was assessed through microcomputed tomography and histology. Marrow stromal cells (MSCs) were used to characterize influence of endogenous SR-BI in cell functions. Total and HDL-associated cholesterol in null mice were increased by 32-60%, correlating with its role in lipoprotein metabolism. Distal metaphyses from 2- and 4-mo-old null mice showed correspondingly 46 and 37% higher bone volume fraction associated with a higher number of trabeculae. Histomorphometric analyses in 2-mo-old null male mice revealed 1.42-fold greater osteoblast surface, 1.37-fold higher percent mineralizing surface, and 1.69-fold enhanced bone formation rate. In vitro assays for MSCs from null mice revealed 37% higher proliferation rate, 48% more alkaline phosphatase activity, 70% greater mineralization potential and a 2-fold osterix (Sp7) expression, yet a 0.5-fold decrease in caveolin-1 (Cav1) expression. Selective uptake levels of HDL-associated cholesteryl oleate and estradiol were similar between MSC from wild-type and Scarb1 null mice, suggesting that its contribution to this process is not its main role in these cells. However, Scarb1 knockout stunted the HDL-dependent regulation of Cav1 genic expression. Scarb1 null mice are not prone to osteoporosis but show higher bone mass associated with enhanced bone formation.
The preservation of bone mass relies on adequate proliferation, differentiation, secretion of matrix proteins and rate of apoptosis of the bone-forming osteoblasts. Although growing body of evidence indicates that the transient receptor potential (TRP) channels play important roles in numerous cellular functions, limited information is available about the TRP channels in osteoblasts. Here, we inventoried the gene expression and addressed some roles of the TRP channels in various osteoblast-like cells. The transcripts of canonical TRP (TRPC) channels were revealed for TRPC1, TRPC3, TRPC4 and TRPC6 in human MG-63, SaOS and U2 OS osteoblasts while transcripts for TRPC2, TRPC4, TRPC6 and TRPC7 were observed in the murine MC3T3 osteoblasts. PCR products were shown for the melastatin-related TRP (TRPM) channels TRPM4, TRPM6, TRPM7 and TRPM8 in all cell lines. The TRPM1 was specifically expressed by murine MC3T3 cells while the TRPM3 transcripts were revealed solely in human osteoblast-like cells. Transcripts for TRPV2 and TRPV4 were shown in osteoblastic cells. By interfering RNA approaches, the TRPC1 channels in osteoblasts were shown to be responsible for the capacitative calcium entry (CCE) and for the stimulation of cell proliferation by platelet-derived growth factor. On the other hand, interfering RNA-mediated abrogation of the expression of TRPM7, known as calcium and magnesium channels, resulted in the reduction of both basal and growth factor-stimulated osteoblastic cell proliferation. Our results provide the first complete reference for the gene expression of TRP channels in osteoblasts and point to their importance in cell proliferation.
Sustained erythropoiesis and concurrent bone marrow hyperplasia are proposed to be responsible for low bone mass density (BMD) in chronic hemolytic pathologies. As impaired erythropoiesis is also frequent in these conditions, we hypothesized that free heme may alter marrow and bone physiology in these disorders. Bone status and bone marrow erythropoiesis were studied in mice with hemolytic anemia (HA) induced by phenylhydrazine (PHZ) or Plasmodium infection and in bled mice. All treatments resulted in lower hemoglobin concentrations, enhanced erythropoiesis in the spleen and reticulocytosis. The anemia was severe in mice with acute hemolysis, which also had elevated levels of free heme and ROS. No major changes in cellularity and erythroid cell numbers occurred in the bone marrow of bled mice, which generated higher numbers of erythroid blast forming units (BFU-E) in response to erythropoietin. In contrast, low numbers of bone marrow erythroid precursors and BFU-E and low concentrations of bone remodelling markers were measured in mice with HA, which also had blunted osteoclastogenesis, in opposition to its enhancement in bled mice. The alterations in bone metabolism were accompanied by reduced trabecular bone volume, enhanced trabecular spacing and lower trabecular numbers in mice with HA. Taken together our data suggests that hemolysis exerts distinct effects to bleeding in the marrow and bone and may contribute to osteoporosis through a mechanism independent of the erythropoietic stress.
The biological activity of 24R,25-dihydroxyvitamin D3 [24R,25(OH)2D3] remains controversial, but it has been suggested that it contributes to fracture healing. Cyp24a1-/- mice, synthesizing no 24R,25(OH)2D3, show suboptimal endochondral ossification during fracture repair, with smaller callus and reduced stiffness. These defects were corrected by 24R,25(OH)2D3 treatment, but not by 1,25-dihydroxyvitamin D3. Microarrays with Cyp24a1-/- callus mRNA identified FAM57B2 as a mediator of the 24R,25(OH)2D3 effect. FAM57B2 produced lactosylceramide (LacCer) upon specific binding of 24R,25(OH)2D3. Fam57b inactivation in chondrocytes (Col2-Cre Fam57bfl/fl) phenocopied the callus formation defect of Cyp24a1-/- mice. LacCer or 24R,25(OH)2D3 injections restored callus volume, stiffness, and mineralized cartilage area in Cyp24a1-null mice, but only LacCer rescued Col2-Cre Fam57bfl/fl mice. Gene expression in callus tissue suggested that the 24R,25(OH)2D3/FAM57B2 cascade affects cartilage maturation. We describe a previously unrecognized pathway influencing endochondral ossification during bone repair through LacCer production upon binding of 24R,25(OH)2D3 to FAM57B2. Our results identify potential new approaches to ameliorate fracture healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.