This paper reviews the current state of knowledge pertaining to the interactions of lake ice and climate. Lake ice has been shown to be sensitive to climate variability through observations and modelling, and both long-term and short-term trends have been identified from ice records. Ice phenology trends have typically been associated with variations in air temperatures while ice thickness trends tend to be associated more to changes in snow cover. The role of ice cover in the regional climate is less documented and with longer ice-free seasons possible as a result of changing climate conditions, especially at higher latitudes, the effects of lakes on their surrounding climate (such as increased evaporation, lake-effect snow and thermal moderation of surrounding areas, for example) can be expected to become more prominent. The inclusion of lakes and lake ice in climate modelling is an area of increased attention in recent studies. An important step in improving predictions of ice conditions in models is the assimilation of remote sensing data in areas where in-situ data is lacking, or non-representative of the lake conditions. The ability to accurately represent ice cover on lakes will be an important step in the improvement of global circulation models, regional climate models and numerical weather forecasting.
Abstract:Recent studies have shown that ice duration in lakes and rivers over the Northern Hemisphere has decreased over the 19th and 20th centuries in response to global warming. However, lake ice trends have not been well documented in Canada. Because of its size, considerable variability may exist in both freeze-up and break-up dates across the country. In this paper, results of the analysis of recent trends in freeze-up and break-up dates across Canada are presented. Trends toward earlier break-up dates are observed for most lakes during the time periods of analysis which encompass the 1990s. Freeze-up dates, on the other hand, show few significant trends and a low degree of temporal coherence when compared with break-up dates. These results are compared with trends in autumn and spring 0°C isotherm dates over the time period 1966-95. Similar spatial and temporal patterns are observed, with generally significant trends toward earlier springs/break-up dates over most of western Canada and little change in isotherm and freeze-up dates over the majority of the country in autumn. Strong correlations (r > 0Ð5) between 0°C isotherm dates and freeze-up/break-up dates at many locations across the country reveal the high synchrony of these variables. These results are also consistent with more recent observations of other cryospheric and atmospheric variables that indicate, in particular, a general trend toward earlier springs in the latter part of the 20th century. The results of this study provide further evidence of the robustness of lake ice as a proxy indicator of climate variability and change.
Abstract:A one-dimensional thermodynamic model for simulating lake-ice phenology is presented and evaluated. The model can be driven with observed daily or hourly atmospheric forcing of air temperature, relative humidity, wind speed, cloud amount and snowfall. In addition to computing the energy balance components, key model output includes the temperature profile at an arbitrary number of levels within the ice/snow (or the water temperature if there is no ice) and ice thickness (clear ice and snow-ice) on a daily basis, as well as freeze-up and break-up dates. The lake-ice model is used to simulate ice-growth processes on shallow lakes in arctic, sub-arctic, and high-boreal forest environments. Model output is compared with field and remote sensing observations gathered over several ice seasons. Simulated ice thickness, including snow-ice formation, compares favourably with field measurements. Ice-on and ice-off dates are also well simulated when compared with field and satellite observations, with a mean absolute difference of 2 days. Model simulations and observations illustrate the key role that snow cover plays on the seasonal evolution of ice thickness and the timing of spring break-up. It is also shown that lake morphometry, depth in particular, is a determinant of ice-off dates for shallow lakes at high latitudes.
There are many lakes of widely varying morphometry in northern latitudes. For this study region, in the central Mackenzie River valley of western Canada, lakes make up 37% of the landscape. The nonlake components of the landscape are divided into uplands (55%) and wetlands (8%). With such abundance, lakes are important features that can influence the regional climate. This paper examines the role of lakes in the regional surface energy and water balance and evaluates the links to the frequency–size distribution of lakes. The primary purpose is to examine how the surface energy balance may influence regional climate and weather. Lakes are characterized by both the magnitude and temporal behavior of their surface energy balances during the ice-free period. The impacts of combinations of various-size lakes and land–lake distributions on regional energy balances and evaporation cycles are presented. Net radiation is substantially greater over all water-dominated surfaces compared with uplands. The seasonal heat storage increases with lake size. Medium and large lakes are slow to warm in summer. Their large cumulative heat storage, near summer’s end, fuels large convective heat fluxes in fall and early winter. The evaporation season for upland, wetland, and small, medium, and large lakes lasts for 19, 21, 22, 24, and 30 weeks, respectively. The regional effects of combinations of surface types are derived. The region is initially treated as comprising uplands only. The influences of wetland, small, medium, and large lakes are added sequentially, to build up to the energy budget of the actual landscape. The addition of lakes increases the regional net radiation, the maximum regional subsurface heat storage, and evaporation substantially. Evaporation decreases slightly in the first half of the season but experiences a large enhancement in the second half. The sensible heat flux is reduced substantially in the first half of the season, but changes little in the second half. For energy budget modeling the representation of lake size is important. Net radiation is fairly independent of size. An equal area of medium and large lakes, compared with small lakes, yields substantially larger latent heat fluxes and lesser sensible heat fluxes. Lake size also creates large differences in regional flux magnitudes, especially in the spring and fall periods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.