Summary
Differences between species in their response to environmental fluctuations cause asynchronized growth series, suggesting that species diversity may help communities buffer the effects of environmental fluctuations. However, within‐species variability of responses may impact the stabilizing effect of growth asynchrony.
We used tree ring data to investigate the diversity–stability relationship and its underlying mechanisms within the temperate and boreal mixed woods of Eastern Canada. We worked at the individual tree level to take into account the intraspecific variability of responses to environmental fluctuations.
We found that species diversity stabilized growth in forest ecosystems. The asynchrony of species’ response to climatic fluctuations and to insect outbreaks explained this effect. We also found that the intraspecific variability of responses to environmental fluctuations was high, making the stabilizing effect of diversity highly variable.
Synthesis. Our results are consistent with previous studies suggesting that the asynchrony of species’ response to environmental fluctuations drives the stabilizing effect of diversity. The intraspecific variability of these responses modulates the stabilizing effect of species diversity. Interactions between individuals, variation in tree size and spatial heterogeneity of environmental conditions could play a critical role in the stabilizing effect of diversity.
This study explored the underground interactions between black spruce and trembling aspen in pure and mixed stands to understand how their soil resource use help these species coexist in the boreal mixedwoods of Western Quebec. We analyzed species-specific fine root foraging strategies (root biomass and root tissue density) along three soil layers (organic, top 0–15 cm, and bottom 15–30 cm mineral soil), using 180 soil cores. We collected cores in three sites, each containing three 20 × 50 m2 plots of pure spruce, pure aspen, and mixed spruce and aspen stands. Spruce had a shallow rooting, whereas aspen had a deep rooting in both types of stands. Compared to pure spruce stands, spruce had a lower fine root biomass (FRB) and a higher root tissue density (RTD) in the organic layer of mixed stands. Both patterns were indicative of spruce’s more intensive resource use strategy and competitive advantage over aspen in that layer. Aspen FRB in the organic soil did not differ significantly between pure and mixed stands, but increased in the mineral soil of mixed stands. Since we did not observe a significant difference in the nutrient content of the mineral soil layer between pure aspen and mixed stands, we concluded that aspen may experience competitive exclusion in the organic layer by spruce. Aspen exhibited an extensive nutrient uptake strategy in the organic layer of mixed stands: higher FRB and lower RTD than spruce. In mixed stands, the differences in aspen rooting patterns between the organic and mineral layers suggested the use of contrasting nutrient uptake strategies along the soil profile. We speculate that the stronger spatial separation of the roots of spruce and aspen in mixed stands likely contribute to a higher partitioning of their nutrient uptake along the soil profile. These results indicate the competitive exclusion of aspen by spruce in boreal mixedwoods, which likely occurs in the soil organic layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.