Streptococcus sanguinis is an oral commensal and an etiological agent of infective endocarditis. Previous studies have identified the SsaACB manganese transporter as essential for endocarditis virulence; however, the significance of SsaACB in the oral environment has never been examined. Here we report that a ΔssaACB deletion mutant of strain SK36 exhibits reduced growth and manganese uptake under acidic conditions. Further studies revealed that these deficits resulted from the decreased activity of TmpA, shown in the accompanying paper to function as a ZIP‐family manganese transporter. Transcriptomic analysis of fermentor‐grown cultures of SK36 WT and ΔssaACB strains identified pH‐dependent changes related to carbon catabolite repression in both strains, though their magnitude was generally greater in the mutant. In strain VMC66, which possesses a MntH transporter, loss of SsaACB did not significantly alter growth or cellular manganese levels under the same conditions. Interestingly, there were only modest differences between SK36 and its ΔssaACB mutant in competition with Streptococcus mutans in vitro and in a murine oral colonization model. Our results suggest that the heterogeneity of the oral environment may provide a rationale for the variety of manganese transporters found in S. sanguinis.
Streptococcus sanguinis is an oral commensal and an etiological agent of infective endocarditis. Previous studies have identified the SsaACB manganese transporter as essential for endocarditis virulence; however, the significance of SsaACB in the oral environment has never been examined. Here we report that a ΔssaACB mutant of strain SK36 exhibits reduced growth and manganese uptake under acidic conditions. Further studies revealed that these deficits resulted from the decreased activity of TmpA, shown in the accompanying paper to function as a ZIP-family manganese transporter. Transcriptomic analysis of fermentor-grown cultures of SK36 WT and ΔssaACB strains identified pH-dependent changes related to carbon catabolite repression in both strains, though their magnitude was generally greater in the mutant. In strain VMC66, which possesses a MntH transporter, loss of SsaACB did not significantly alter growth or cellular manganese levels under the same conditions. Interestingly, there were only modest differences between SK36 and its ΔssaACB mutant in competition with Streptococcus mutans in vitro and in a murine oral colonization model. Our results suggest that the heterogeneity of the oral environment may provide a rationale for the variety of manganese transporters found in S. sanguinis and point to strategies for enhancing the safety of oral probiotics.
Aims We evaluated two species of human oral commensal streptococci in protection against dental caries induced by Streptococcus mutans. Methods and Results Candidate probiotics, Streptococcus sp. A12, Streptococcus sanguinis BCC23 and an arginine deiminase mutant of BCC23 (∆arcADS) were tested for their ability to reduce S. mutans‐induced caries in an established mouse model. Mice were colonized with a probiotic, challenged with S. mutans, then intermittently reinoculated with a probiotic strain. Oral colonization of each strain and autochthonous bacteria was assessed by quantitative polymerase chain reaction. Both BCC23 strains, but not A12, were associated with markedly reduced sulcal caries, persistently colonized mucosal and dental biofilms, and significantly lowered S. mutans counts. All three strains enhanced mucosal colonization of autochthonous bacteria. In a follow‐up experiment, when S. mutans was established first, dental and mucosal colonization of S. mutans was unaltered by a subsequent challenge with either BCC23 strain. Results between BCC23 and BCC23 ∆arcADS were equivalent. Conclusions BCC23 is a potential probiotic to treat patients at high caries risk. Its effectiveness is independent of ADS activity, but initial dental cleaning to enhance establishment in dental biofilms may be required. Significance and Impact of the Study In vivo testing of candidate probiotics is highly informative, as effectiveness is not always reflected by genotype or in vitro behaviours
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.