Using confocal laser scanning and double immunogold electron microscopy, we demonstrate that reggie-1 and -2 are colocalized in Յ0.1-m plasma membrane microdomains of neurons and astrocytes. In astrocytes, reggie-1 and -2 do not occur in caveolae but clearly outside these structures. Microscopy and coimmunoprecipitation show that reggie-1 and -2 are associated with fyn kinase and with the glycosylphosphatidyl inositol-anchored proteins Thy-1 and F3 that, when activated by antibody cross-linking, selectively copatch with reggie. Jurkat cells, after crosslinking of Thy-1 or GM1 (with the use of cholera toxin), exhibit substantial colocalization of reggie-1 and -2 with Thy-1, GM1, the T-cell receptor complex and fyn. This, and the accumulation of reggie proteins in detergent-resistant membrane fractions containing F3, Thy-1, and fyn imparts to reggie-1 and -2 properties of raft-associated proteins. It also suggests that reggie-1 and -2 participate in the formation of signal transduction centers. In addition, we find reggie-1 and -2 in endolysosomes. In Jurkat cells, reggie-1 and -2 together with fyn and Thy-1 increase in endolysosomes concurrent with a decrease at the plasma membrane. Thus, reggie-1 and -2 define raft-related microdomain signaling centers in neurons and T cells, and the protein complex involved in signaling becomes subject to degradation.
Prion proteins (PrPs) are key players in fatal neurodegenerative disorders, yet their physiological functions remain unclear, as PrP knockout mice develop rather normally. We report a strong PrP loss-of-function phenotype in zebrafish embryos, characterized by the loss of embryonic cell adhesion and arrested gastrulation. Zebrafish and mouse PrP mRNAs can partially rescue this knockdown phenotype, indicating conserved PrP functions. Using zebrafish, mouse, and Drosophila cells, we show that PrP: (1) mediates Ca+2-independent homophilic cell adhesion and signaling; and (2) modulates Ca+2-dependent cell adhesion by regulating the delivery of E-cadherin to the plasma membrane. In vivo time-lapse analyses reveal that the arrested gastrulation in PrP knockdown embryos is due to deficient morphogenetic cell movements, which rely on E-cadherin–based adhesion. Cell-transplantation experiments indicate that the regulation of embryonic cell adhesion by PrP is cell-autonomous. Moreover, we find that the local accumulation of PrP at cell contact sites is concomitant with the activation of Src-related kinases, the recruitment of reggie/flotillin microdomains, and the reorganization of the actin cytoskeleton, consistent with a role of PrP in the modulation of cell adhesion via signaling. Altogether, our data uncover evolutionarily conserved roles of PrP in cell communication, which ultimately impinge on the stability of adherens cell junctions during embryonic development.
The reggie protein family consists of two proteins, reggie-1 and -2, also called flotillins, which are highly ubiquitous and evolutionarily conserved. Both reggies have been shown to be associated with membrane rafts and are involved in various cellular processes such as T-cell activation, phagocytosis and insulin signalling. However, the exact molecular function of these proteins remains to be determined. In addition, the mechanism of membrane association of reggie-1, which does not contain any transmembrane domain, is not known. In this study, we have produced a fusion protein of reggie-1 with enhanced green fluorescent protein and generated targeted substitutions for the inactivation of putative palmitoylation and myristoylation sites. We were able to show that reggie-1 is myristoylated and multiply palmitoylated and that lipid modifications are necessary for membrane association of reggie-1. Overexpression of reggie-1 resulted in the induction of numerous filopodia-like protrusions in various cell lines, suggesting a role for reggie-1 as a signalling protein in actin-dependent processes.
Neurons are believed to possess plasmalemmal microdomains and proteins analogous to the caveolae and caveolin of nonneuronal cells. Caveolae are plasmalemmal invaginations where activated glycosyl‐phosphatidylinositol (GPI)‐anchored proteins preferentially assemble and where transmembrane signaling may occur. Molecular cloning of rat reggie‐1 and ‐2 (80% identical to goldfish reggie proteins) shows that reggie‐2 is practically identical to mouse flotillin‐1. Flotillin‐1 and epidermal surface antigen (ESA) (flotillin‐2) are suggested to represent possible membrane proteins in caveolae. Rat reggie‐1 is 99% homologous to ESA in overlapping sequences but has a 49‐amino‐acid N‐terminus not present in ESA. Antibodies (ABs) which recognize reggie‐1 or ‐2 reveal that both proteins cluster at the plasmamembrane and occur in micropatches in neurons [dorsal root ganglia (DRGs), retinal ganglion, and PC‐12 cells] and in nonneuronal cells. In neurons, reggie micropatches occur along the axon and in lamellipodia and filopodia of growth cones, but they do not occur in caveolae. By quantitative electronmicroscopic analysis we demonstrate the absence of caveolae in (anti‐caveolin negative) neurons and show anti‐reggie‐1 immunogold‐labeled clusters at the plasmamembrane of DRGs. When ABs against the GPI‐anchored cell adhesion molecules (CAMs) F3 and Thy‐1 are applied to live DRGs, the GPI‐linked CAMs sequester into micropatches. Double immunofluorescence shows a colocalization of the CAMs with micropatches of anti‐reggie antibodies. Thus, reggie‐1 and reggie‐2 identify sites where activated GPI‐linked CAMs preferentially accumulate and which may represent noncaveolar micropatches (domains). © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 502–523, 1998
Developing retinal axons in the zebrafish embryo were stained with HRP or with the fluorescent dyes dil and diO to study the formation of the retinotectal projection. Retinal axons leave the eye at 34-36 hr postfertilization (PF), invade the tectum at 46-48 hr PF, and innervate the tectal neuropil at 70-72 hr PF. Dorsal and ventral axons occupy separate aspects of the optic nerve and tract and pass into their retinotopically appropriate ventral and dorsal hemitectum, respectively. Nasal and temporal axons are segregated in the nerve, mixed in the tract, and are coextensive over the rostral half of tectum until 56 hr PF. They then segregate again, due to the progression of nasal axons into the open caudal tectum. Thus, at 70-72 hr PF, dorsal and ventral as well as temporal and nasal axons occupy their retinotopically appropriate tectal quadrants. After ablation of the temporal retina prior to the time of axonal outgrowth, the nasal axons bypass the vacant rostral tectum to terminate in the caudal tectal half. Temporal axons in the absence of nasal axons remain restricted to their appropriate rostral tectal half, suggesting that nasal and temporal axons possess a preference for their retinotopically appropriate tectal domains. Measurements of individual terminal arbors and the tectal areas in embryos and in adult zebrafish showed that individual arbors are large with respect to the embryonic tectum but are about 14-15 times smaller than in the adult. However, the proportion of tectum covered by embryonic arbors is about 7 times larger than in the adult, suggesting that a higher precision of the adult projection is achieved as a result of a greater enlargement of the tectum than of the arbors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.