A small fraction of red giants are known to be lithium (Li) rich, in contradiction with expectations from stellar evolutionary theory. A possible explanation for these atypical giants is the engulfment of a Li-rich planet or brown dwarf by the star. In this work, we model the evolution of Li abundance in canonical red giants including the accretion of a sub-stellar mass companion. We consider a wide range of stellar and companion masses, Li abundances, stellar metallicities, and planetary orbital periods. Based on our calculations, companions with masses lower than 15 M J dissolve in the convective envelope and can induce Li enrichment in regimes where extra mixing does not operate. Our models indicate that the accretion of a substellar companion can explain abundances up to A(Li)≈2.2, setting an upper limit for Li-rich giants formed by this mechanism. Giants with higher abundances need another mechanism to be explained. For reasonable planetary distributions, we predict the Li abundance distribution of low-mass giants undergoing planet engulfment, finding that between 1% to 3% of them should have A(Li) ≥ 1.5. We show that depending on the stellar mass range, this traditional definition of Li-rich giants is misleading, as isolated massive stars would be considered anomalous while giants engulfing a companion would be set aside, flagged as normal. We explore the detectability of companion engulfment, finding that planets with masses higher than ∼ 7 M J produce a distinct signature, and that descendants of stars originating in the Li-dip and low luminosity red giants are ideal tests of this channel.
Aims. We address the existence and origin of the lithium (Li) desert, a region in the Li -T eff plane sparsely populated by stars. Here we analyze some of the explanations that have been suggested for this region, including mixing in the late main sequence, a Li dip origin for stars with low Li abundances in the region, and a possible relation with the presence of planets. Methods. To study the Li desert, we measured the atmospheric parameters and Li abundance of 227 late-F dwarfs and subgiants, chosen to be in the T eff range of the desert and without previous Li abundance measurements. Subsequently, we complemented those with literature data to obtain a homogeneous catalog of 2318 stars, for which we compute masses and ages. We characterize stars surrounding the region of the Li desert.Results. We conclude that stars with low Li abundances below the desert are more massive and more evolved than stars above the desert. Given the unexpected presence of low Li abundance stars in this effective temperature range, we concentrate on finding their origin. We conclude that these stars with low Li abundance do not evolve from stars above the desert: at a given mass, stars with low Li (i.e., below the desert) are more metal-poor. Conclusions. Instead, we suggest that stars below the Li desert are consistent with having evolved from the Li dip, discarding the need to invoke additional mixing to explain this feature. Thus, stars below the Li desert are not peculiar and are only distinguished from other subgiants evolved from the Li dip in that their combination of atmospheric parameters locates them in a range of effective temperatures where otherwise only high Li abundance stars would be found (i.e., stars above the desert).
The Gaia-ESO survey recently reported on a large sample of lithium (Li) abundance determinations for evolved stars in the rich open cluster Trumpler 20. They argue for a scenario where virtually all stars experience post main sequence mixing and Li is preserved in only two objects. We present an alternate explanation, where Li is normal in the vast majority of cluster stars and anomalously high in these two cases. We demonstrate that the Li upper limits in the red giants can be explained with a combination of main sequence depletion and standard dredge-up, and that they are close to the detected levels in other systems of similar age. In our framework, two of the detected giants are anomalously Li-rich, and we propose that both could have been produced by the engulfment of a substellar mass companion of 16 +6 −10 M J . This would imply that ∼ 5% of 1.8 M stars in this system, and by extension elsewhere, should have substellar mass companions of high mass that could be engulfed at some point in their lifetimes. We discuss future tests that could confirm or refute this scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.