A major hurdle in the development of natural language processing (NLP) methods for Electronic Health Records (EHRs) is the lack of large, annotated datasets. Privacy concerns prevent the distribution of EHRs, and the annotation of data is known to be costly and cumbersome. Synthetic data presents a promising solution to the privacy concern, if synthetic data has comparable utility to real data and if it preserves the privacy of patients. However, the generation of synthetic text alone is not useful for NLP because of the lack of annotations. In this work, we propose the use of neural language models (LSTM and GPT-2) for generating artificial EHR text jointly with annotations for named-entity recognition. Our experiments show that artificial documents can be used to train a supervised named-entity recognition model for de-identification, which outperforms a state-of-the-art rule-based baseline. Moreover, we show that combining real data with synthetic data improves the recall of the method, without manual annotation effort. We conduct a user study to gain insights on the privacy of artificial text. We highlight privacy risks associated with language models to inform future research on privacy-preserving automated text generation and metrics for evaluating privacy-preservation during text generation.
Conversational agents have been recently incorporated into Virtual Heritage to provide more immersive and interactive user experience. However, existing chatbot guides lack the capacity to leverage the rich background knowledge graphs (KGs) to provide better interactions between visitors and cultural collections. In this paper, we present a KG driven conversational museum guide that answers visitor’s questions and recommend relevant art objects in a virtual exhibition, while modelling user interest to offer personalised information and guidance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.