Inactivation of immobilized penicillin acylase has been studied in the presence of substrate (penicillin G) and products (phenylacetic acid and 6-aminopenicillanic acid), underthe hypothesis that substances which interact with the enzyme molecule during catalysis will have an effect on enzyme stability. The kinetics of immobilized penicillin acylase inactivation was a multistage process, decay constants being evaluated for the free-enzyme and enzyme complexes, from whose values modulation factors were determined for the effectors in each enzyme complex at each stage. 6-Aminopenicillanic acid and penicillin G stabilized the enzyme in the first stage of decay. Modulation factors in that stage were 0.96 for penicillin G and 0.98 for 6-aminopenicillanic acid. Phenylacetic acid increased the rate of inactivation in both stages, modulating factors being -2.31 and -2.23, respectively. Modulation factors influence enzyme performance in a reactor and are useful parameters for a proper evaluation. 0 1996 John Wiley & Sons, Inc.
In recent years, conditioned medium (CM) obtained from the culture of mesenchymal stromal/stem cells (MSCs) has been shown to effectively promote tissue repair and modulate the immune response in vitro and in different animal models, with potential for application in regenerative medicine. Using CM offers multiple advantages over the implantation of MSCs themselves: 1) simpler storage, transport, and preservation requirements, 2) avoidance of the inherent risks of cell transplantation, and 3) potential application as a ready-to-go biologic product. For these reasons, a large amount of MSCs research has focused on the characterization of the obtained CM, including soluble trophic factors and vesicles, preconditioning strategies for enhancing paracrine secretion, such as hypoxia, a three-dimensional (3D) environment, and biochemical stimuli, and potential clinical applications. In vitro preconditioning strategies can increase the viability, proliferation, and paracrine properties of MSCs and therefore improve the therapeutic potential of the cells and their derived products. Specifically, dynamic cultivation conditions, such as fluid flow and 3D aggregate culture, substantially impact cellular behaviour. Increased levels of growth factors and cytokines were observed in 3D cultures of MSC grown on orbital or rotatory shaking platforms, in stirred systems, such as spinner flasks or stirred tank reactors, and in microgravity bioreactors. However, only a few studies have established dynamic culture conditions and protocols for 3D aggregate cultivation of MSCs as a scalable and reproducible strategy for CM production. This review summarizes significant advances into the upstream processing, mainly the dynamic generation and cultivation of MSC aggregates, for de CM manufacture and focuses on the standardization of the soluble factor production.
BACKGROUND Spent coffee grounds (SCGs) are a good source of chlorogenic acid (CGA), which can be hydrolyzed to quinic acid (QA) and caffeic acid (CA). These molecules have antioxidant and neuroprotective capacities, benefiting human health. The hydrolysis of CGA can be done by biotechnological processes, such as solid‐state fermentation (SSF). This work evaluated the use of SSF with Aspergillus sp. for the joint release of the three molecules from SCGs. RESULTS Hydroalcoholic extraction of the total phenolic compounds (TPCs) from SCGs was optimized, obtaining 28.9 ± 1.97 g gallic acid equivalent (GAE) kg−1 SCGs using 0.67 L ethanol per 1 L, a 1:9 solid/liquid ratio, and a 63 min extraction time. Subsequently, SSF was performed for 30 days, achieving the maximum yields for CGA, QA, and TPCs on the 16th day: 7.12 ± 0.01 g kg−1, 4.68 ± 0.11 g kg−1, and 54.96 ± 0.49 g GAE kg−1 respectively. CA reached its maximum value on the 23rd day, at 4.94 ± 0.04 g kg−1. The maximum antioxidant capacity was 635.7 mmol Trolox equivalents kg−1 on the 14th day. Compared with unfermented SCGs extracts, TPCs and CGA increase their maximum values 2.3‐fold, 18.6‐fold for CA, 14.2 for QA, and 6.4‐fold for antioxidant capacity. Additionally, different extracts’ profiles were obtained throughout the SSF process, allowing us to adjust the type of enriched extract to be produced based on the SSF time. CONCLUSION SSF represents an alternative to produce extracts with different compositions and, consequently, different antioxidant capacities, which is a potentially attractive fermentation process for different applications. © 2022 Society of Chemical Industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.