Results suggest that meiosis and spermiogenesis can be resumed in vitro, with normal differentiated spermatids showing a low fertilization potential but regular rates of blastocyst formation. However, most of the embryos did not reach the morula stage and showed major sex chromosome abnormalities.
Day care centers (DCCs) are unique settings where young children are at increased risk for colonization by pneumococci and Haemophilus influenzae. Although point prevalence studies in DCCs are frequent, only a few longitudinal studies on the dynamics of colonization have been published. We conducted a 1-year longitudinal study with 11 sampling periods on nasopharyngeal carriage of pneumococci and H. influenzae among 47 children who attended a single DCC. All isolates were antibiotyped and genotyped by pulsed-field gel electrophoresis. Pneumococci were also serotyped. Of the 414 samples obtained, 61.4% contained pneumococci, and 87% contained H. influenzae. Only 8.3% of the samples were negative for both species. Twenty-one pneumococcal clones and 47 H. influenzae clones were identified. Introduction of clones occurred during all year. Ninety-eight percent and 96% of all pneumococcal and H. influenzae isolates, respectively, belonged to clones shared by more than one child. Children were sequentially colonized with up to six pneumococcal clones (mean, 3.6) and five serotypes and nine H. influenzae clones (mean, 7.1). Clones with increased capacity for transmission and/or prolonged colonization were identified in both species. These two fitness properties appeared to be independent. In conclusion, among DCC attendees, a high rate of acquisition and turnover of strains was observed, and all children were overwhelmingly colonized by clones shared with others. DCCs are units where permanent introduction of new clones occurs, and attendees, as a whole, provide a pool of hosts where the fittest clones find privileged opportunities to persist and expand.Studies conducted during the last decade have highlighted the important role of day care centers (DCCs) as unique places where young children with immature immune systems and poor hygienic behavior are crowded together, resulting in an increased risk for colonization and transmission of upper respiratory tract pathogens such as Streptococcus pneumoniae and Haemophilus influenzae (1,4,5,10,23,30).While point prevalence studies in DCCs to study colonization by these bacteria have been conducted in several countries (reviewed in reference 7), longitudinal studies are less frequent and have often focused on the individual host and not on a particular epidemiological setting (9,14,16). By looking at the DCC as a unit, one would expect to obtain additional information on the fitness capacities (for transmission and persistence) of individual clones, as they would be exposed to the same pool of hosts (the attendees). To our best knowledge, extended longitudinal studies that have systematically applied genotyping techniques to study pneumococci and H. influenzae in DCCs with such objectives in mind are very scarce. Trottier et al. studied H. influenzae colonization among 38 DCC attendees for 4 months (29), and Yagupsy et al. conducted a 7-month study focusing on the transmission of drug-resistant pneumococci among 48 children from two DCCs (30). A third study by Raymond et al. f...
Urofacial syndrome (UFS) is an autosomal recessive congenital disease featuring grimacing and incomplete bladder emptying. Mutations of HPSE2, encoding heparanase 2, a heparanase 1 inhibitor, occur in UFS, but knowledge about the HPSE2 mutation spectrum is limited. Here, seven UFS kindreds with HPSE2 mutations are presented, including one with deleted asparagine 254, suggesting a role for this amino acid, which is conserved in vertebrate orthologs. HPSE2 mutations were absent in 23 nonneurogenic neurogenic bladder probands and, of 439 families with nonsyndromic vesicoureteric reflux, only one carried a putative pathogenic HPSE2 variant. Homozygous Hpse2 mutant mouse bladders contained urine more often than did wild-type organs, phenocopying human UFS. Pelvic ganglia neural cell bodies contained heparanase 1, heparanase 2, and leucine-rich repeats and immunoglobulin-like domains-2 (LRIG2), which is mutated in certain UFS families. In conclusion, heparanase 2 is an autonomic neural protein implicated in bladder emptying, but HPSE2 variants are uncommon in urinary diseases resembling UFS.
O PDF relativo ao artigo que solicita, não se encontra disponível em Acesso Aberto. Motivos: O editor não permite o depósito e disponibilização em acesso aberto do PDF que solicita. Para consultar o documento deve aceder ao endereço do editor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.