Abstract:The blue-green pigment known as xylindein that is produced by species in the Chlorociboria genus is under heavy investigation for its potential in textile dyes, wood dyes, and solar cells. Xylindein has not yet been synthesized, and while its production can be stimulated under laboratory conditions, it is also plentiful in downed, decayed wood in forested lands. Unfortunately, little is known about the wood preference and forest type preference for this genus, especially outside New Zealand. To map the genus would be a massive undertaking, and herein a method by which citizen scientists could contribute to the distribution map of Chlorociboria species is proposed. The initial trial of this method found untrained participants successfully identified Chlorociboria stained wood in each instance, regardless of forest type. This simple, easy identification and classification system should be well received by citizen-scientists and is the first step towards a global understanding of how xylindein production might be managed for across various ecosystems.
Spalted wood, wood colored by fungi, has been popular in woodcraft for centuries. Most spalted wood, however, is found in an advanced state of decay and cannot be utilized. This project describes the use of viscoelastic thermal compression (VTC) to investigate the potential increase in spalted woods’ strength and stiffness, with the main objective of converting so-called “punky” wood into the top layer (veneer layer or “coating”) on commercial flooring. Spalted Acer macrophyllum logs were cut into veneers of size 7 mm × 7.8 cm × 25 cm and were then VTC-treated at 150 °C and 50 psi for 11.5 min. Statistical analysis on the mixed linear models showed significant increases for both the density and hardness of spalted wood (p < 0.0001). Density and Brinell hardness increased by 84% and 209%, respectively. FTIR analysis revealed that the wood polymers present in spalted wood were more susceptible to degradation imposed by the heat of the VTC treatment compared to sound wood. Additionally, the color analysis of the wood specimens showed statistically significant changes in color after the VTC treatment (p < 0.0001), which turned the wood surface darker and redder. The use of the VTC technology to transform spalted wood into wood flooring is viable. However, when exposed to moisture, the VTC-treated spalted wood showed a high percentage of set recovery (78%), which was significantly different from the set recovery of the sound wood (71%, p = 0.004). Successful use of VTC-treated spalted wood for flooring will require addressing of the swelling issue, and additional studies are needed to fully characterize the anatomy of VTC-treated spalted wood.
The use of wood coloured by fungi, or 'spalted' wood, stretches back to the Renaissance. Most of this work was restricted to shades of blue-green, brown, white, and black zone lines. Modern spalting has added in shades of red and blue. The current colour palette of spalting fungi has the potential to be expanded through the use of Scytalidium ganodermophthorum, a fungal pathogen and suspected soft rot of wood, which produces multiple colours of pigment throughout its growth, including yellow and purple. However, no previous study has tracked colours of the extracted fungal pigment across time. This study showed significant colour change of extracted fungal pigments across 36 weeks of growth, transitioning over time from bright yellow to green shades, before finally becoming slate purple. This diversity of hues increases the colours available to artists working with spalting pigments, and has the potential to expand the art form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.