Malfunctions of potassium channels are increasingly implicated as causes of neurological disorders. However, the functional roles of the large-conductance voltage-and Ca 2؉ -activated K ؉ channel (BK channel), a unique calcium, and voltage-activated potassium channel type have remained elusive. Here we report that mice lacking BK channels (BK ؊/؊ ) show cerebellar dysfunction in the form of abnormal conditioned eye-blink reflex, abnormal locomotion and pronounced deficiency in motor coordination, which are likely consequences of cerebellar learning deficiency. At the cellular level, the BK ؊/؊ mice showed a dramatic reduction in spontaneous activity of the BK ؊/؊ cerebellar Purkinje neurons, which generate the sole output of the cerebellar cortex and, in addition, enhanced short-term depression at the only output synapses of the cerebellar cortex, in the deep cerebellar nuclei. The impairing cellular effects caused by the lack of postsynaptic BK channels were found to be due to depolarization-induced inactivation of the action potential mechanism. These results identify previously unknown roles of potassium channels in mammalian cerebellar function and motor control. In addition, they provide a previously undescribed animal model of cerebellar ataxia. P otassium channels are the largest and most diverse class of ion channels underlying electrical signaling in the brain (1). By causing highly regulated, time-dependent, and localized polarization of the cell membrane, the opening of K ϩ channels mediates feedback control of excitability in a variety of cell types and conditions (1). Consequently, K ϩ channel dysfunctions can cause a range of neurological disorders (2-6), and drugs that target K ϩ channels hold promise for a variety of clinical applications (7).Among the wide range of voltage-and calcium-gated K ϩ channel types, one stands out as unique: the large-conductance voltage-and Ca 2ϩ -activated K ϩ channel (BK channel, also termed Slo or Maxi-K) differs from all other K ϩ channels in that it can be activated by both intracellular Ca 2ϩ ions and membrane depolarization (8). These channels are widely expressed in central and peripheral neurons, as well as in other tissues (9), and are regarded as a promising drug target (10). However, the functions of the BK channels in vivo have not previously been directly tested in any vertebrate species. We therefore decided to examine the functions of these channels by inactivating the gene encoding the pore-forming channel protein. MethodsA complete description of the methods is given in Supporting Methods, which is published as supporting information on the PNAS web site.Generation of BK Channel ␣ Subunit-Deficient Mice. In the targeting vector (Fig. 5, which is published as supporting information on the PNAS web site), the pore exon was flanked by a single loxP site and a floxed neo͞tk cassette. Correctly targeted embryonic stem cells were injected into C57BL͞6 blastocysts and resulting chimeric mice mated with C57BL͞6. Homozygous BK-deficient mice (F 2 generation) ...
Background-Abnormally elevated blood pressure is the most prevalent risk factor for cardiovascular disease. The large-conductance, voltage-and Ca 2ϩ -dependent K ϩ (BK) channel has been proposed as an important effector in the control of vascular tone by linking membrane depolarization and local increases in cytosolic Ca 2ϩ to hyperpolarizing K ϩ outward currents. However, the BK channel may also affect blood pressure by regulating salt and fluid homeostasis, particularly by adjusting the renin-angiotensin-aldosterone system. Methods and Results-Here we report that deletion of the pore-forming BK channel ␣ subunit leads to a significant blood pressure elevation resulting from hyperaldosteronism accompanied by decreased serum K ϩ levels as well as increased vascular tone in small arteries. In smooth muscle from small arteries, deletion of the BK channel leads to a depolarized membrane potential, a complete lack of membrane hyperpolarizing spontaneous K ϩ outward currents, and an attenuated cGMP vasorelaxation associated with a reduced suppression of Ca 2ϩ transients by cGMP. The high level of BK channel expression observed in wild-type adrenal glomerulosa cells, together with unaltered serum renin activities and corticotropin levels in mutant mice, suggests that the hyperaldosteronism results from abnormal adrenal cortical function in BK Ϫ/Ϫ mice. Conclusions-These results identify previously unknown roles of BK channels in blood pressure regulation and raise the possibility that BK channel dysfunction may underlie specific forms of hyperaldosteronism. 6,7 Recent studies raise the possibility that changes in 1 subunit expression contribute to the development of hypertension in rat 8 and that gain of function mutation in the same subunit decreases the prevalence of diastolic hypertension in humans. 9 However, even in the absence of functional 1 subunits, the ␣ subunit can still form functional channels, which might be activated at physiological potentials if their voltage and Ca 2ϩ sensitivity are increased by other factors such as endothelial factors 10,11 and/or phosphorylation. 12,13 Thus, functional BK channels may be operative in blood vessels even when the 1 subunit is lacking. In addition, BK channels in tissues other than vasculature, such as the adrenal gland, 14 may also influence blood pressure regulation. Therefore, we used mice lacking the BK channel ␣ subunit (BK Ϫ/Ϫ 15 to evaluate the global impact of BK channels on blood pressure regulation. MethodsDetails are given in the online-only Data Supplement. Mice BKϪ/Ϫ mice were generated as described. 15 Wild type (WT) and BK Ϫ/Ϫ mice with the hybrid SV129/C57BL6 background (always F2 generation) were used. Either litter-or age-matched animals were randomly assigned to the experimental procedures undertaken in accordance with the German legislation on protection of animals. Immunohistochemistry of Adrenal GlandFor immunofluorescence, on-slide 5-m cryostat slices from nonfixed WT and BK Ϫ/Ϫ adrenal glands were incubated with anti-BK␣ (674 -1115) . BK...
The large conductance voltage-and Ca 2؉ -activated potassium (BK) channel has been suggested to play an important role in the signal transduction process of cochlear inner hair cells. BK channels have been shown to be composed of the pore-forming ␣-subunit coexpressed with the auxiliary 1-subunit. Analyzing the hearing function and cochlear phenotype of BK channel ␣-(BK␣ ؊/؊ ) and 1-subunit (BK1 ؊/؊ ) knockout mice, we demonstrate normal hearing function and cochlear structure of BK1 ؊/؊ mice. During the first 4 postnatal weeks also, BK␣ ؊/؊ mice most surprisingly did not show any obvious hearing deficits. High-frequency hearing loss developed in BK␣ ؊/؊ mice only from Ϸ8 weeks postnatally onward and was accompanied by a lack of distortion product otoacoustic emissions, suggesting outer hair cell (OHC) dysfunction. Hearing loss was linked to a loss of the KCNQ4 potassium channel in membranes of OHCs in the basal and midbasal cochlear turn, preceding hair cell degeneration and leading to a similar phenotype as elicited by pharmacologic blockade of KCNQ4 channels. Although the actual link between BK gene deletion, loss of KCNQ4 in OHCs, and OHC degeneration requires further investigation, data already suggest human BK-coding slo1 gene mutation as a susceptibility factor for progressive deafness, similar to KCNQ4 potassium channel mutations.cochlea ͉ KCNQ4 C a 2ϩ -activated potassium (BK) channels are heterooctamers of four ␣-and four -subunits. The pore-forming ␣-subunit (KCNMA1) is a member of the slo family of potassium channels (1), originally identified in Drosophila (2). Studies of BK channels from smooth muscle have identified an auxiliary 1-subunit (KCNMB1) whose presence in the channel complex confers an increased voltage and calcium sensitivity toward the poreforming ␣-subunit (3).In turtle and chick, there is evidence that differential splicing of the BK channel ␣-subunit in conjunction with a graded expression of the auxiliary -subunit along the tonotopic axis provides the functional heterogeneity of BK channels that underlies electrical tuning (for review, see ref. 4).In inner hair cells (IHCs) of the mammalian organ of Corti, the predominant K ϩ conductance is a voltage-and Ca 2ϩ -activated K ϩ channel termed I K,f (5, 6). BK channel mRNA (7,8) and protein expression (8) were shown in IHCs, indicating that I K,f flows through BK channels. The presumed physiological roles of BK channels are (i) a decrease of the membrane time constant even at the resting potential and (ii) fast repolarization of the receptor potential. Both contribute to phase-locked receptor potentials up to high sound frequencies (6). In addition to IHCs, BK type Ca 2ϩ -activated K ϩ conductances have been measured in OHCs (9) and in efferent fibers onto outer hair cells (OHCs) (10). The role of BKs in either OHCs or efferents is still controversially discussed (9).Studying the expression of BK channel ␣-splice variants and -isoforms in rat cochlea using in situ hybridization and PCR techniques revealed the strict coexpressio...
A gene (cpd1) coding for the dimethylallyltryptophan synthase (DMATS) that catalyzes the first specific step in the biosynthesis of ergot alkaloids, was cloned from a strain of Claviceps purpurea that produces alkaloids in axenic culture. The derived gene product (CPD1) shows only 70% similarity to the corresponding gene previously isolated from Claviceps strain ATCC 26245, which is likely to be an isolate of C. fusiformis. Therefore, the related cpd1 most probably represents the first C. purpurea gene coding for an enzymatic step of the alkaloid biosynthetic pathway to be cloned. Analysis of the 3'-flanking region of cpd1 revealed a second, closely linked ergot alkaloid biosynthetic gene named cpps1, which codes for a 356-kDa polypeptide showing significant similarity to fungal modular peptide synthetases. The protein contains three amino acid-activating modules, and in the second module a sequence is found which matches that of an internal peptide (17 amino acids in length) obtained from a tryptic digest of lysergyl peptide synthetase 1 (LPS1) of C. purpurea, thus confirming that cpps1 encodes LPS1. LPS1 activates the three amino acids of the peptide portion of ergot peptide alkaloids during D-lysergyl peptide assembly. Chromosome walking revealed the presence of additional genes upstream of cpd1 which are probably also involved in ergot alkaloid biosynthesis: cpox1 probably codes for an FAD-dependent oxidoreductase (which could represent the chanoclavine cyclase), and a second putative oxidoreductase gene, cpox2, is closely linked to it in inverse orientation. RT-PCR experiments confirm that all four genes are expressed under conditions of peptide alkaloid biosynthesis. These results strongly suggest that at least some genes of ergot alkaloid biosynthesis in C. purpurea are clustered, opening the way for a detailed molecular genetic analysis of the pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.