In recent years, an aberrant gastrointestinal colonization has been found to be associated with an higher risk for postnatal sepsis, necrotizing enterocolitis (NEC) and growth impairment in preterm infants. As a consequence, the reasons of intestinal dysbiosis in this population of newborns have increasingly become an object of interest. The presence of a link between the gut and lung microbiome's development (gut-lung axis) is emerging, and more data show as a gut-brain cross talking mediated by an inflammatory milieu, may affect the immunity system and influence neonatal outcomes. A revision of the studies which examined gut and lung microbiota in preterm infants and a qualitative analysis of data about characteristic patterns and related outcomes in terms of risk of growing impairment, Necrotizing Enterocolitis (NEC), Bronchopulmonary Dysplasia (BPD), and sepsis have been performed. Microbiota take part in the establishment of the gut barrier and many data suggest its immune-modulator role. Furthermore, the development of the gut and lung microbiome (gut-lung axis) appear to be connected and able to lead to abnormal inflammatory responses which have a key role in the pathogenesis of BPD. Dysbiosis and the gut predominance of facultative anaerobes appear to be crucial to the pathogenesis and subsequently to the prevention of such diseases.
High distending lung pressures increased oxygenation but decreased peripheral perfusion with no adverse cerebral side effects. Coupled with the reduction in respiratory inductive plethysmography-derived lung volume, high continuous distending pressure had adverse cardiopulmonary effects. Incorporation of lung volume and hemodynamic and oxygenation variables may guide optimum lung volume determination during high-frequency ventilation recruitment procedure while preventing adverse effects on the pulmonary circulation.
BackgroundDespite an increased use of non-invasive ventilatory strategies and gentle ventilation, pneumothorax remains a common complication in preterm infants. The ventilator management of infants with air leaks remains challenging in terms of both prevention and treatment. Recently the safety and efficacy of expectant management avoiding chest tube drainage to treat large air leak in preterm infants hemodynamically stable has been reported.Case presentationIn the present study, we report five cases of preterm infants with birth weight ≤ 1250 g affected by respiratory distress syndrome and treated with nasal continuous positive airway pressure as first intention. They were intubated for worsening of respiratory distress with increasing oxygen requirement and concomitant increase of respiratory rate and PCO2 values due to occurrence of pneumothorax, and they were successfully treated using high-frequency oscillatory ventilation without chest tube insertion.ConclusionIn our experience high-frequency oscillatory ventilation provided a conservative management of a significant pneumothorax in preterm newborns hemodynamically stable and requiring mechanical ventilation. This approach allowed us to avoid the increasing of air leak and the insertion of chest tube drainage and all the subsequent associated risks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.