Thyroid hormone (T(3)) regulates the growth and differentiation of rat cerebellar astrocytes. Previously, we have demonstrated that these effects are due, at least in part, to the increased expression of extracellular matrix molecules and growth factors, such as fibroblast growth factor-2. T(3) also modulates neuronal development in an astrocyte-mediated manner. In the mammalian central nervous system, excitatory neurotransmission is mediated mainly by glutamate. However, excessive stimulation of glutamate receptors can lead to excitotoxicity and cell death. Astrocytic glutamate transporters, GLT-1 and GLAST, play an essential role in the clearance of the neuronal-released glutamate from the extracellular space and are essential for maintaining physiological extracellular glutamate levels in the brain. In the present study, we showed that T(3) significantly increased glutamate uptake by cerebellar astrocytes compared with control cultures. Inhibitors of glutamate uptake, such as L-PDC and DL-TBOA, abolished glutamate uptake on control or T(3)-treated astrocytes. T(3) treatment of astrocytes increased both mRNA levels and protein expression of GLAST and GLT-1, although no significant changes on the distribution of these transporters were observed. The gliotoxic effect of glutamate on cultured cerebellar astrocytes was abolished by T(3) treatment of astrocytes. In addition, the neuronal viability against glutamate challenge was enhanced on T(3)-treated astrocytes, showing a putative neuroprotective effect of T(3). In conclusion, our results showed that T(3) regulates extracellular glutamate levels by modulating the astrocytic glutamate transporters. This represents an important mechanism mediated by T(3) on the improvement of astrocytic microenvironment in order to promote neuronal development and neuroprotection.
Guanine derivatives (GD) have been shown to exert relevant extracellular effects as intercellular messengers, neuromodulators in the central nervous system, and trophic effects on astrocytes and neurons. Astrocytes have been pointed out as the major source of trophic factors in the nervous system, however, several trophic effects of astrocytic-released soluble factors are mediated through modulation of extracellular matrix (ECM) proteins. In this study, we investigated the effects of guanosine-5'-monophosphate (GMP) and guanosine (GUO) on the expression and organization of ECM proteins in cerebellar astrocytes. Moreover, to evaluate the effects of astrocytes pre-treated with GMP or GUO on cerebellar neurons we used a neuron-astrocyte coculture model. GMP or GUO alters laminin and fibronectin organization from a punctate to a fibrillar pattern, however, the expression levels of the ECM proteins were not altered. Guanine derivatives-induced alteration of ECM proteins organization is mediated by activation of mitogen activated protein kinases (MAPK), CA(2+)-calmodulin-dependent protein kinase II (CaMK-II), protein kinase C (PKC), and protein kinase A (PKA) pathways. Furthermore, astrocytes treated with GMP or GUO promoted an increased number of cerebellar neurons in coculture, without altering the neuritogenesis pattern. No proliferation of neurons or astrocytes was observed due to GMP or GUO treatment. Our results show that guanine derivatives promote a reorganization of the ECM proteins produced by astrocytes, which might be responsible for a better interaction with neurons in cocultures.
Thyroid hormone (T(3)) plays an essential role in the central nervous system development. Astrocytes mediate many of the T(3) effects in the growth and differentiation of cerebellum. In culture, T(3) induces cerebellar astrocytes to secrete growth factors, mainly FGF(2), and alters the expression and organization of the extracellular matrix (ECM) proteins, laminin, and fibronectin. In addition, T(3)-treated astrocytes promote neuronal differentiation. In this study, we have investigated whether other ECM molecules, such as syndecans, are involved in T(3) action. Thus, we analyzed the expression of syndecans (1-4) by RT-PCR in astrocyte cultures from cerebellum, cortex, and hippocampus of newborn rats. Our results showed that syndecans (1-4) are expressed in astrocytes of cerebellum and cortex, whereas in hippocampus only syndecans 2 and 4 were detected. Semi-quantitative RT-PCR analysis revealed the reduced expression of syndecans 1, 2, and 4, and increased expression of syndecan 3 in hypothyroid cerebellum, when compared to the euthyroid tissue. Furthermore, we observed a reduced expression of syndecans 2 and 3 in T(3)-treated cerebellar astrocytes, when compared to control cultures. This balance of proteoglycans may be involved in T(3) action mediated by FGF(2) signaling, possibly affecting the formation of the trimeric signaling receptor complex composed by syndecan/FGF/FGF-receptor (FGFR), which is essential for FGFR dimerization, activation, and subsequent cell signaling.
Deposition of amyloid-β (Aβ) peptides into specific encephalic structures has been pointed as an important event related to Alzheimer's disease pathogenesis and associated with activation of glial cells, neuroinflammation, oxidative responses, and cognitive deficits. Aβ-induced pro-oxidative damage may regulate the activity of glutamate transporters, leading to reduced glutamate uptake and, as a consequence, excitotoxic events. Herein, we evaluated the effects of the pretreatment of atorvastatin, a HMG-CoA reductase inhibitor, on behavioral and biochemical alterations induced by a single intracerebroventricular (i.c.v.) injection of aggregated Aβ1-40 in mice. Atorvastatin (10 mg/kg/day, p.o.) was administered through seven consecutive days before Aβ1-40 administration. Aβ1-40 caused significant cognitive impairment in the object-place recognition task (2 weeks after the i.c.v. injection) and this phenomenon was abolished by atorvastatin pretreatment. Ex vivo evaluation of glutamate uptake into hippocampal and cerebral cortices slices showed atorvastatin, and Aβ1-40 decreased hippocampal and cortical Na(+)-dependent glutamate uptake. However, Aβ1-40 increased Na(+)-independent glutamate uptake and it was prevented by atorvastatin in prefrontal cortex slices. Moreover, Aβ1-40 treatment significantly increased the cerebrocortical activities of glutathione reductase and glutathione peroxidase and these events were blunted by atorvastatin pretreatment. Reduced or oxidized glutathione levels were not altered by Aβ1-40 and/or atorvastatin treatment. These results extend the notion of the protective action of atorvastatin against neuronal toxicity induced by Aβ1-40 demonstrating that a pretreatment with atorvastatin prevents the spatial learning and memory deficits induced by Aβ in rodents and promotes changes in glutamatergic and antioxidant systems mainly in prefrontal cortex.
The molecular mechanisms mediating manganese (Mn)-induced neurotoxicity, particularly in the immature central nervous system, have yet to be completely understood. In this study, we investigated whether mitogen-activated protein kinases (MAPKs) and tyrosine hydroxylase (TH) could represent potential targets of Mn in striatal and hippocampal slices obtained from immature rats (14 days old). The aim of this study was to evaluate if the MAPK pathways are modulated after subtoxic Mn exposure, which do not significantly affect cell viability. The concentrations of manganese chloride (MnCl2; 10–1,000 μM) caused no change in cell viability in slices exposed for 3 or 6 hours. However, Mn exposure significantly increased extracellular signal-regulated kinase (ERK) 1/2, as well as c-Jun N-terminal kinase (JNK) 1/2/3 phosphorylation at both 3 and 6 hours incubations, in both brain structures. Furthermore, Mn exposure did not change the total content or phosphorylation of TH at the serine 40 site in striatal slices. Thus, Mn at concentrations that do not disrupt cell viability causes activation of MAPKs (ERK1/2 and JNK1/2/3) in immature hippocampal and striatal slices. These findings suggest that altered intracellular MAPKs signaling pathways may represent an early event concerning the effects of Mn in the immature brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.