Maize was first domesticated in a restricted valley in south-central Mexico. It was diffused throughout the Americas over thousands of years, and following the discovery of the New World by Columbus, was introduced into Europe. Trade and colonization introduced it further into all parts of the world to which it could adapt. Repeated introductions, local selection and adaptation, a highly diverse gene pool and outcrossing nature, and global trade in maize led to difficulty understanding exactly where the diversity of many of the local maize landraces originated. This is particularly true in Africa and Asia, where historical accounts are scarce or contradictory. Knowledge of post-domestication movements of maize around the world would assist in germplasm conservation and plant breeding efforts. To this end, we used SSR markers to genotype multiple individuals from hundreds of representative landraces from around the world. Applying a multidisciplinary approach combining genetic, linguistic, and historical data, we reconstructed possible patterns of maize diffusion throughout the world from American "contribution" centers, which we propose reflect the origins of maize worldwide. These results shed new light on introductions of maize into Africa and Asia. By providing a first globally comprehensive genetic characterization of landraces using markers appropriate to this evolutionary time frame, we explore the post-domestication evolutionary history of maize and highlight original diversity sources that may be tapped for plant improvement in different regions of the world.
CIMMYT is the source of improved maize (Zea mays L.) breeding material for a significant portion of the nontemperate maize growing world. Landraces which did not serve as sources for improved maize germplasm may contain untapped allelic variation useful for future breeding progress. Information regarding levels of diversity in different germplasm would help to identify sources for broadening improved breeding pools and in seeking genes and alleles that have not been tapped in modern maize breeding. The objectives of this study were to examine the diversity in maize landraces, modern open pollinated varieties (OPVs), and inbred lines adapted to nontemperate growing areas to find unique sources of allelic diversity that may be used in maize improvement. Twenty‐five simple sequence repeat markers were used to characterize 497 individuals from 24 landraces of maize from Mexico, 672 individuals from 23 CIMMYT improved breeding populations, and 261 CIMMYT inbred lines. Number of alleles, gene diversity per locus, unique alleles per locus, and population structure all differ between germplasm groups. The unique alleles found in each germplasm group represent a great reservoir of untapped genetic resources for maize improvement, and implications for hybrid breeding are discussed.
This study describes the genetic diversity and population structure of 194 native maize populations from 23 countries of Latin America and the Caribbean. The germplasm, representing 131 distinct landraces, was genetically characterized as population bulks using 28 SSR markers. Three main groups of maize germplasm were identified. The first, the Mexico and Southern Andes group, highlights the Pre-Columbian and modern exchange of germplasm between North and South America. The second group, Mesoamerica lowland, supports the hypothesis that two separate human migration events could have contributed to Caribbean maize germplasm. The third, the Andean group, displayed early introduction of maize into the Andes, with little mixing since then, other than a regional interchange zone active in the past. Events and activities in the pre- and post-Columbian Americas including the development and expansion of pre-Columbian cultures and the arrival of Europeans to the Americas are discussed in relation to the history of maize migration from its point of domestication in Mesoamerica to South America and the Caribbean through sea and land routes.
In Africa, many smallholder farmers grow open‐pollinated maize (Zea mays L.) varieties (OPVs), which allow seed recycling and outyield traditional unimproved landraces. Seeds of productive OPVs are provided to farmers, often by nongovernmental organizations (NGOs) that help farmers access improved seeds, particularly following disasters in which original seed is lost. However, NGOs often rely on local seed suppliers to provide seed, and in some years the seeds provided to the farmers are suspected not to be of the promised variety. Here we present methodology to prove within a high level of confidence if two samples of seeds are the same genetic population or not, despite the difficulties involved in fingerprinting heterologous populations. In addition to heterogeneity within populations, difficulties can include sampling errors, differences in the fields or years in which the seeds were multiplied, and seed mixing. Despite these confounding sources of variation, we show the possibility to conclusively differentiate each of the populations used in this work. This methodology will allow breeders, seed companies, government agencies, and NGOs to ensure the purity and identity of high‐yielding, locally adapted OPVs reach farmers so they can generate the highest yields possible in their fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.