Summary 1.In terrestrial ecosystems many species show large population fluctuations caused by pulsed resources, such as mast seeding. A prime example of a mammal strongly affected by mast seeding of trees is the wild boar Sus scrofa , a species that has become a pest in many parts of the world. We investigated the population dynamics of wild boar to assist the development of effective management strategies for this species and possibly for other pulsed resource consumers. 2. We analysed published vital rates of wild boar using Leslie matrix projection models and elasticity analysis. Models were based on vital rates of animals under poor, intermediate and good environmental conditions, which represent combinations of differences in food availability (particularly mast of beech Fagus sylvatica and/or oak Quercus spp.) and winter climate. 3. Interestingly, we observed a crossover in the ranking of elasticities ( e ; the relative impact of each vital rate on population growth rate λ ) when comparing different conditions. While the elasticity of λ to adult survival was highest in poor environments [ e ( P adult ) = 0·36, e ( P juvenile ) = 0·22], the elasticity of λ to juvenile survival was highest under good conditions [ e ( P adult ) = 0·16, e ( P juvenile ) = 0·28]. Thus juvenile survival becomes increasingly important for population growth as habitat conditions improve. 4. Our analysis of empirical beech mast records gave some indication of an increase of full masts over the last few decades. Modelling different beech mast scenarios showed that an increase in full mast frequency will lead to a rapid increase in λ . The availability of alternative food resources, namely agricultural crops, may also contribute to an expansion of wild boar populations. 5. Synthesis and applications . We suggest that, whenever possible, management strategies should be based on separate elasticity analyses for different environmental conditions, especially for species dependent on pulsed resources. For wild boar we suggest the following principal management strategies to stop further population increases: (i) supplementary feeding should be strictly avoided; (ii) under good environmental conditions, reducing juvenile survival will have the largest effect on λ , whereas strong hunting pressure on adult females will lead to most effective population control in years with poor conditions.
Survival probability is predicted to underlie the evolution of life histories along a slow–fast continuum. Hibernation allows a diverse range of small mammals to exhibit seasonal dormancy, which might increase survival and consequently be associated with relatively slow life histories. We used phylogenetically informed GLS models to test for an effect of hibernation on seasonal and annual survival, and on key attributes of life histories among mammals. Monthly survival was in most cases higher during hibernation compared with the active season, probably because inactivity minimizes predation. Hibernators also have approximately 15 per cent higher annual survival than similar sized non-hibernating species. As predicted, we found an effect of hibernation on the relationships between life history attributes and body mass: small hibernating mammals generally have longer maximum life spans (50% greater for a 50 g species), reproduce at slower rates, mature at older ages and have longer generation times compared with similar-sized non-hibernators. In accordance with evolutionary theories, however, hibernating species do not have longer life spans than non-hibernators with similar survival rates, nor do they have lower reproductive rates than non-hibernators with similar maximum life spans. Thus, our combined results suggest that (i) hibernation is associated with high rates of overwinter and annual survival, and (ii) an increase in survival in hibernating species is linked with the coevolution of traits indicative of relatively slow life histories.
Edible dormice (Glis glis) reproduce in years with beech mast seeding, but entire populations may skip reproduction in years when tree seeds, a major food resource of this small hibernator, are absent. We tested the hypothesis that the year-to-year variability in reproductive effort caused by this breeding strategy should lead to detectable differences in yearly survival rates. Therefore, we analyzed capture-recapture data from animals occupying nest boxes, collected over nine years at two study sites in Germany. Among fully grown adults (aged two years or older), survival probabilities were significantly lower (0.32 +/- 0.04) after reproductive years (n = 5) compared to years (n = 4) with absent or below-average reproduction (0.58 +/- 0.07) on both study sites. This trade-off between reproduction and subsequent survival was observed in both females and males and appears to be a relatively rare case in which costs of reproduction in terms of longevity are detectable at the population level. Effects of reproduction on survival were less pronounced when yearlings (with a generally lower reproductive effort) were included and were more distinct in a suboptimal habitat. Of those females breeding in nest boxes, 96.5% had only one or two litters within the study period. Considering these and previously published results, including a report of extremely high mean longevities (9-12 years) of dormice in a habitat with infrequent mast seeding, we conclude that edible dormice flexibly adjust life history tactics to local mast patterns. Long stretches of mast failures can in fact lead to relative semelparity, i.e., a strategy in which dormice "sit tight" for several years until environmental conditions are favorable for reproduction.
Average longevity in free-living edible dormice (Glis glis) can reach 9 years, which is extremely high for a small rodent. This remarkable life span has been related to a peculiar life history strategy and the rarity of reproductive bouts in these seed eaters. Most females (96%) reproduce only once or twice in their lifetime, predominantly during years of mast seeding of, e.g., beech, but entire populations can skip reproduction in years of low seed availability. Surprisingly, in non-reproductive years, large fractions of populations apparently vanished and were never captured above ground. Therefore, we determined the duration of above-ground activity, and body temperature profiles in a subset of animals, of dormice under semi-natural conditions in outdoor enclosures. We found that non-reproductive dormice returned to dormancy in underground burrows throughout summer after active seasons as short as <2 weeks. Thus, animals spent up to >10 months per year in dormancy. This exceeds dormancy duration of any other mammal under natural conditions. Summer dormancy was not caused by energy constraints, as it occurred in animals in good condition, fed ad libitum and without climatic stress. We suggest that almost year-round torpor has evolved as a strategy to escape birds of prey, the major predators of this arboreal mammal. This unique predator-avoidance strategy clearly helps in explaining the unusually high longevity of dormice.
Summary1. Hibernation is the most effective means for energy conservation during winter in mammals. The drawbacks of deep and prolonged torpor include reduced immunocompetence, and consequently, hibernators should be selected to minimize torpor expression when climatic conditions or energy availability (e.g. food or fat stores) permit. Therefore, it seems surprising that some hibernators employ extraordinary long hibernation seasons, lasting well beyond periods with unfavourable conditions. 2. Because of their extended use of torpor, edible dormice (Glis glis) provide an ideal model for scrutinizing interactions between energy reserves (i.e. body fat stores) and thermoregulatory patterns. We used a multimodel inference approach to analyse body temperature data (i.e. use of torpor) from 42 entire hibernation seasons over 4 years in females in relation to body mass. 3. Body mass prior to hibernation did not affect the duration of the hibernation season, but animals hibernated for c. 8 months, that is, 2 months longer than required by environmental conditions. Fatter individuals aroused significantly more often, had a higher mean minimum body temperature during torpor and remained euthermic for longer periods than leaner animals. 4. Surplus energy was therefore not used to shorten the hibernation season, but to rewarm more frequently, and to allow shallower torpor bouts. These adjustments apparently serve to avoid negative effects of torpor and, perhaps equally importantly, to minimize the time active above-ground. We argue that maintaining a short active season, despite surplus energy reserves, may be explained by known beneficial effects of hibernation on survival rates (via predator avoidance). 5. Our data provide quantitative evidence that hibernation is a flexible tool within life-history strategies. We conclude that, apart from energetic necessities due to harsh environmental conditions, predator avoidance may be an important factor influencing patterns of hibernation and torpor in mammals. Thus, our study indicates that climatic conditions alone are not a good predictor of hibernation patterns or survival in hibernating species during global climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.