SUMMARY
Intrathecal administration of anti-infectives is indicated in central nervous system infections by multiresistant pathogens when drugs that can reach adequate cerebrospinal fluid (CSF) concentrations by systemic therapy are not available. Antibiotics that readily pass the blood-brain and blood-CSF barriers and/or that have low toxicity allowing an increase in the daily dosage should not be used for intrathecal therapy. Intrathecal therapy is accompanied by systemic treatment. Antibacterials indispensable for intrathecal therapy include aminoglycosides, colistin, daptomycin, tigecycline, and vancomycin. Limited experience suggests the utility of the antifungals amphotericin B and caspofungin. Intraventricular administration ensures distribution throughout the CSF compartment, whereas intralumbar dosing often fails to attain adequate antibiotic concentrations in the ventricles. The individual dose is determined by the estimated size of the CSF space and by the estimated clearance from CSF. For moderately lipophilic anti-infectives with a molecular weight above approximately 1,000 g/mol, as well as for hydrophilic drugs with a molecular weight above approximately 400 g/mol, one daily dose is normally adequate. The ventricular drain should be clamped for 15 to 120 min to facilitate the distribution of the anti-infective in the CSF space. Therapeutic drug monitoring of the trough levels is necessary only in cases of therapeutic failure.
Reverse polymeric micelles are obtained following the association of polymeric amphiphiles in apolar media. To this date, reports of pharmaceutical applications for such micelles have been scarce, mainly because these systems have been studied in solvents that are not suitable for medical use. Here, alkylated star-shaped poly(glycerol methacrylate) polymers have been proposed in the design of oil-soluble reverse polymeric micelles. Micellar behavior was studied in various apolar solvents, including ethyl oleate, a pharmaceutically acceptable vehicle. The polymers were shown to assemble into spherical nanostructures (<40 nm) as determined by cryogenic transmission electron microscopy and atomic force microscopy studies. Interestingly, the reverse micelles were able to encapsulate various peptides/proteins (vasopressin, myoglobin, and albumin) in substantial amounts and facilitate their solubilization in oil. The nature of both the polymer used in micelle formation and the guest molecules was found to influence the ability of the micelle to interact with hydrophilic compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.