Clinical protocols utilize bone marrow to seed synthetic and decellularized allogeneic bone grafts for enhancement of scaffold remodeling and fusion. Marrow-derived cytokines induce host neovascularization at the graft surface, but hypoxic conditions cause cell death at the core. Addition of cellular components that generate an extensive primitive plexus-like vascular network that would perfuse the entire scaffold upon anastomosis could potentially yield significantly higher-quality grafts. We used a mouse model to develop a two-stage protocol for generating vascularized bone grafts using mesenchymal stem cells (hMSCs) from human bone marrow and umbilical cord-derived endothelial cells. The endothelial cells formed tube-like structures and subsequently networks throughout the bone scaffold 4–7 days after implantation. hMSCs were essential for stable vasculature both in vitro and in vivo; however, contrary to expectations, vasculature derived from hMSCs briefly cultured in medium designed to maintain a proliferative, nondifferentiated state was more extensive and stable than that with hMSCs with a TGF-β-induced smooth muscle cell phenotype. Anastomosis occurred by day 11, with most hMSCs associating closely with the network. Although initially immature and highly permeable, at 4 weeks the network was mature. Initiation of scaffold mineralization had also occurred by this period. Some human-derived vessels were still present at 5 months, but the majority of the graft vasculature had been functionally remodeled with host cells. In conclusion, clinically relevant progenitor sources for pericytes and endothelial cells can serve to generate highly functional microvascular networks for tissue engineered bone grafts.
Pericytes are essential to vascularization, but the purification and characterization of pericytes remain unclear. Smooth muscle actin alpha (alpha-SMA) is one marker [corrected] of pericytes. The aim of this study is to purify the alpha-SMA positive cells from bone marrow and study the characteristics of these cells and the interaction between alpha-SMA positive cells and endothelial cells. The bone marrow stromal cells were harvested from alpha-SMA-GFP transgenic mice, and the alpha-SMA-GFP positive cells were sorted by FACS. The proliferative characteristics and multilineage differentiation ability of the alpha-SMA-GFP positive cells were tested. A 3-D culture model was then applied to test their vascularization by loading alpha-SMA-GFP positive cells and endothelial cells on collagen-fibronectin gel. Results demonstrated that bone marrow stromal cells are mostly alpha-SMA-GFP positive cells which are pluripotent, and these cells expressed alpha-SMA during differentiation. The alpha-SMA-GFP positive cells could stimulate the endothelial cells to form tube-like structures and subsequently robust vascular networks in 3-D culture. In conclusion, the bone marrow derived pluripotent cells include [corrected] pericytes and can contribute to vascularization.
Objectives: Creation of functional, durable vasculature remains an important goal within the field of regenerative medicine. Engineered biological vasculature has the potential to restore or improve human tissue function. We hypothesized that the pleotropic effects of insulin-like growth factor 1 (IGF1) would enhance the engineering of capillary-like vasculature. Results: IGF1 supplementation significantly enhanced de novo vasculogenesis both in vitro and in vivo. Effects were long-term as they lasted the duration of the study period, and included network density, vessel length, and diameter. Bifurcation density was not affected. However, the highest concentrations of IGF1 tested were either ineffective or even deleterious. Sustained IGF1 delivery was required in vivo as the inclusion of recombinant IGF1 protein had minimal impact.Conclusion: IGF1 supplementation can be used to produce neovasculature with significantly enhanced network density and durability. Its use is a promising methodology for engineering de novo vasculature to support regeneration of functional tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.