Human and animal studies imply that sleep is a critical period for consolidation of recent memories. Whereas the majority of researchers focussed on the procedural learning, the present human study concerns how storing of spatial information and episodic memory are linked to sleep stages. Two city mazes, a simple and a complex one, were created by means of a computer program. Local aspects of these mazes appeared as street scenes on a TV-screen. Our subjects sat in front of the screen and manoeuvered through the maze by the help of a three-button PC mouse. Thus, each subject took a 'mental walk' through an imaginary city. The task was to find various end-points and to find the way back to the starting point. Subjects of two experimental groups 'walked' through either the simple or complex city maze for eight hours. Afterwards the subjects slept in our laboratory, where their sleep stages could be measured polygraphically. Subjects who had explored the simple maze showed considerable alteration in sleep architecture. They remained significantly longer in sleep Stage 2 than subjects who had explored the complex maze. Moreover, with successful orientation in the simple maze sleep stages occurred aperiodically, whereas walking through the complex maze was associated with sleep stages in accordance with ultradian cycles, as observed in a control group. Compared to subjects of the control group who had experienced neither maze, the subjects of both experimental groups had significantly enhanced EEG sleep spindle activities. Alteration in temporal architecture of sleep and selective prolongation of sleep Stage 2 following spatial orientation point to a functional linkage between cognitive mapping of space and sleep Stage 2 with enhanced EEG spindle activity.
The present study presents the first behavioral and neural evidence for emotional reactivity during directed threat imagery in GAD. The brain activity pattern suggests an involvement of a fear processing network as a neural correlate of initial exposure during directed imagery in CBT in GAD.
While the role of cortical regions in cognitive control processes is well accepted, the contribution of subcortical structures (e.g., the striatum), especially to the control of response interference, remains controversial. Therefore, the present study aimed to investigate the cortical and particularly subcortical neural mechanisms of response interference control (including selective inhibition). Thirteen healthy young participants underwent event-related functional magnetic resonance imaging while performing a unimanual version of the Simon task. In this task, successful performance required the resolution of stimulus–response conflicts in incongruent trials by selectively inhibiting interfering response tendencies. The behavioral results show an asymmetrical Simon effect that was more pronounced in the contralateral hemifield. Contrasting incongruent trials with congruent trials (i.e., the overall Simon effect) significantly activated clusters in the right anterior cingulate cortex, the right posterior insula, and the caudate nucleus bilaterally. Furthermore, a region of interest analysis based on previous patient studies revealed that activation in the bilateral caudate nucleus significantly co-varied with a parameter of selective inhibition derived from distributional analyses of response times. Our results corroborate the notion that the cognitive control of response interference is supported by a fronto-striatal circuitry, with a functional contribution of the caudate nucleus to the selective inhibition of interfering response tendencies.
Previous research on the neural basis of cognitive control processes has mainly focused on cortical areas, while the role of subcortical structures in cognitive control is less clear. Models of basal ganglia function as well as clinical studies in neurodegenerative diseases suggest that the striatum (putamen and caudate nucleus) modulates the inhibition of interfering responses and thereby contributes to an important aspect of cognitive control, namely response interference control. To further investigate the putative role of the striatum in the control of response interference, 23 patients with stroke-induced lesions of the striatum and 32 age-matched neurologically healthy controls performed a unimanual version of the Simon task. In the Simon task, the correspondence between stimulus location and response location is manipulated so that control over response interference can be inferred from the reaction time costs in incongruent trials. Results showed that stroke patients responded overall slower and more erroneous than controls. The difference in response times (RTs) between incongruent and congruent trials (known as the Simon effect) was smaller in the ipsilesional/-lateral hemifield, but did not differ significantly between groups. However, in contrast to controls, stroke patients exhibited an abnormally stable Simon effect across the reaction time distribution indicating a reduced efficiency of the inhibition process. Thus, in stroke patients unilateral lesions of the striatum did not significantly impair the general ability to control response interference, but led to less efficient selective inhibition of interfering responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.