Age-related neurodegenerative diseases have been associated with chronic neuroinflammation and microglia activation. However, cumulative evidence supports that inflammation only occurs at an early stage once microglia change the endogenous characteristics with aging and switch to irresponsive/senescent and dystrophic phenotypes with disease progression. Thus, it will be important to have the means to assess the role of reactive and aged microglia when studying advanced brain neurodegeneration processes and age-associated related disorders. Yet, most studies are done with microglia from neonates since there are no adequate means to isolate degenerating microglia for experimentation. Indeed, only a few studies report microglia isolation from aged animals, using either short-term cultures or high concentrations of mitogens in the medium, which trigger microglia reactivity. The purpose of this study was to develop an experimental process to naturally age microglia after isolation from neonatal mice and to characterize the cultured cells at 2 days in vitro (DIV), 10 DIV, and 16 DIV. We found that 2 DIV (young) microglia had predominant amoeboid morphology and markers of stressed/reactive phenotype. In contrast, 16 DIV (aged) microglia evidenced ramified morphology and increased matrix metalloproteinase (MMP)-2 activation, as well as reduced MMP-9, glutamate release and nuclear factor kappa-B activation, in parallel with decreased expression of Toll-like receptor (TLR)-2 and TLR-4, capacity to migrate and phagocytose. These findings together with the reduced expression of microRNA (miR)-124, and miR-155, decreased autophagy, enhanced senescence associated beta-galactosidase activity and elevated miR-146a expression, are suggestive that 16 DIV cells mainly correspond to irresponsive/senescent microglia. Data indicate that the model represent an opportunity to understand and control microglial aging, as well as to explore strategies to recover microglia surveillance function.
Alzheimer’s disease (AD) is characterized by a progressive cognitive decline and believed to be driven by the self-aggregation of amyloid-β (Aβ) peptide into oligomers and fibrils that accumulate as senile plaques. It is widely accepted that microglia-mediated inflammation is a significant contributor to disease pathogenesis; however, different microglia phenotypes were identified along AD progression and excessive Aβ production was shown to dysregulate cell function. As so, the contribution of microglia to AD pathogenesis remains to be elucidated. In this study, we wondered if isolated microglia cultured for 16 days in vitro (DIV) would react differentially from the 2 DIV cells upon treatment with 1000 nM Aβ1–42 for 24 h. No changes in cell viability were observed and morphometric alterations associated to microglia activation, such as volume increase and process shortening, were obvious in 2 DIV microglia, but less evident in 16 DIV cells. These cells showed lower phagocytic, migration and autophagic properties after Aβ treatment than the 2 DIV cultured microglia. Reduced phagocytosis may derive from increased CD33 expression, reduced triggering receptor expressed on myeloid cells 2 (TREM2) and milk fat globule-EGF factor 8 protein (MFG-E8) levels, which were mainly observed in 16 DIV cells. Activation of inflammatory mediators, such as high mobility group box 1 (HMGB1) and pro-inflammatory cytokines, as well as increased expression of Toll-like receptor 2 (TLR2), TLR4 and fractalkine/CX3C chemokine receptor 1 (CX3CR1) cell surface receptors were prominent in 2 DIV microglia, while elevation of matrix metalloproteinase 9 (MMP9) was marked in 16 DIV cells. Increased senescence-associated β-galactosidase (SA-β-gal) and upregulated miR-146a expression that were observed in 16 DIV cells showed to increase by Aβ in 2 DIV microglia. Additionally, Aβ downregulated miR-155 and miR-124, and reduced the CD11b+ subpopulation in 2 DIV microglia, while increased the number of CD86+ cells in 16 DIV microglia. Simultaneous M1 and M2 markers were found after Aβ treatment, but at lower expression in the in vitro aged microglia. Data show key-aging associated responses by microglia when incubated with Aβ, with a loss of reactivity from the 2 DIV to the 16 DIV cells, which course with a reduced phagocytosis, migration and lower expression of inflammatory miRNAs. These findings help to improve our understanding on the heterogeneous responses that microglia can have along the progression of AD disease and imply that therapeutic approaches may differ from early to late stages.
The prevalence of Alzheimer’s disease (AD), the most common cause of age-associated dementia, is estimated to increase over the next decades. Evidence suggests neuro-immune signaling deregulation and risk genes beyond the amyloid-β (Aβ) deposition in AD pathology. We examined the temporal profile of inflammatory mediators and microglia deactivation/activation in the brain cortex and hippocampus of 3xTg-AD mice at 3- and 9-month-old. We found upregulated APP processing, decreased expression of CD11b, CX3CR1, MFG-E8, TNF-α, IL-1β, MHC-II and C/EBP-α and increased miR-146a in both brain regions in 3-month-old 3xTG-AD mice, suggestive of a restrictive regulation. Enhanced TNF-α, IL-1β, IL-6, iNOS, SOCS1 and Arginase 1 were only present in the hippocampus of 9-month-old animals, though elevation of HMGB1 and reduction of miR-146a and miR-124 were common features in the hippocampus and cortex regions. miR-155 increased early in the cortex and later in both regions, supporting its potential as a biomarker. Candidate downregulated target genes by cortical miR-155 included Foxo3, Runx2 and CEBPβ at 3 months and Foxo3, Runx2 and Socs1 at 9 months, which are implicated in cell survival, but also in Aβ pathology and microglia/astrocyte dysfunction. Data provide new insights across AD state trajectory, with divergent microglia phenotypes and inflammatory-associated features, and identify critical targets for drug discovery and combinatorial therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.