The purpose of this study was to determine whether the heart in large mammals contains cardiac progenitor cells that regulate organ homeostasis and regenerate dead myocardium after infarction. We report that the dog heart possesses a cardiac stem cell pool characterized by undifferentiated cells that are self-renewing, clonogenic, and multipotent. These clonogenic cells and early committed progeny possess a hepatocyte growth factor (HGF)-cMet and an insulin-like growth factor 1 (IGF-1)-IGF-1 receptor system that can be activated to induce their migration, proliferation, and survival. Therefore, myocardial infarction was induced in chronically instrumented dogs implanted with sonomicrometric crystals in the region of the left ventricular wall supplied by the occluded left anterior descending coronary artery. After infarction, HGF and IGF-1 were injected intramyocardially to stimulate resident cardiac progenitor cells. This intervention led to the formation of myocytes and coronary vessels within the infarct. Newly generated myocytes expressed nuclear and cytoplasmic proteins specific of cardiomyocytes: MEF2C was detected in the nucleus, whereas ␣-sarcomeric actin, cardiac myosin heavy chain, troponin I, and ␣-actinin were identified in the cytoplasm. Connexin 43 and N-cadherin were also present. Myocardial reconstitution resulted in a marked recovery of contractile performance of the infarcted heart. In conclusion, the activation of resident primitive cells in the damaged dog heart can promote a significant restoration of dead tissue, which is paralleled by a progressive improvement in cardiac function. These results suggest that strategies capable of activating the growth reserve of the myocardium may be important in cardiac repair after ischemic injury.cardiac stem cells ͉ myocardial infarction ͉ myocardial regeneration
Abstract-Diabetes leads to a decompensated myopathy, but the etiology of the cardiac disease is poorly understood.Oxidative stress is enhanced with diabetes and oxygen toxicity may alter cardiac progenitor cell (CPC) function resulting in defects in CPC growth and myocyte formation, which may favor premature myocardial aging and heart failure. We report that in a model of insulin-dependent diabetes mellitus, the generation of reactive oxygen species (ROS) leads to telomeric shortening, expression of the senescent associated proteins p53 and p16 INK4a , and apoptosis of CPCs, impairing the growth reserve of the heart. However, ablation of the p66 shc gene prevents these negative adaptations of the CPC compartment, interfering with the acquisition of the heart senescent phenotype and the development of heart failure with diabetes. ROS elicit 3 cellular reactions: low levels activate cell growth, intermediate quantities trigger cell apoptosis, and high amounts initiate cell necrosis. CPC replication predominates in diabetic p66shcϪ/Ϫ , whereas CPC apoptosis and myocyte apoptosis and necrosis prevail in diabetic wild type. Expansion of CPCs and developing myocytes preserves cardiac function in diabetic p66shcϪ/Ϫ , suggesting that intact CPCs can effectively counteract the impact of uncontrolled diabetes on the heart. The recognition that p66shc conditions the destiny of CPCs raises the possibility that diabetic cardiomyopathy is a stem cell disease in which abnormalities in CPCs define the life and death of the heart. Together, these data point to a genetic link between diabetes and ROS, on the one hand, and CPC survival and growth, on the other. Key Words: cardiac stem cells Ⅲ myocyte regeneration Ⅲ replicative senescence Ⅲ telomeric shortening D eath of cardiac cells with chronic loss of myocytes and vascular structures has been proposed as the underlying cause of the anatomical and functional alterations of the diabetic heart. 1 However, myocyte death and defects in the mechanical behavior, regulatory proteins, and Ca 2ϩ cycling of myocytes with diabetes have left unanswered the question of whether these variables play a primary role in the onset of the myopathy or represent secondary events related to the progression of the cardiac disease. Similar abnormalities occur with myocyte hypertrophy associated with ischemic and nonischemic cardiomyopathy, and myocyte death is commonly found in the failing heart. Accumulating evidence supports the notion that the heart possesses a compartment of multipotent progenitor cells (CPCs) that differentiate into myocytes, endothelial cells, and smooth muscle cells in vitro 2-4 and in vivo. 2 The heart constantly renews itself and an imbalance between cell death and regeneration may be present with diabetes and could be mediated by defects in growth and survival of CPCs.Hyperglycemia leads to enzymatic O-glycosylation of proteins, including the transcription factor p53, whose activation upregulates the local renin-angiotensin system and the synthesis of angiotensin II (Ang II)...
Ruthenium compounds have gained large interest for their potential application as chemotherapeutic agents, and in particular the complexes of the type (X)[trans-RuCl4(dmso-S)L] (X = HL or Na, NAMI-A or NAMI, respectively, for L = imidazole) are under investigation for their antimetastatic properties. The NAMI(-A)-like compounds are prodrugs that hydrolyze in vivo, and the investigation of their hydrolytic properties is therefore important for determining the nature of the potential active species. The NAMI-A-type Ru(III) complex 1, (Hdmtp)[trans-RuCl4(dmso-S)(dmtp)] (dmtp is 5,7-dimethyl[1,2,4]triazolo[1,5-a]pyrimidine), and the corresponding sodium analogue 2, (Na)[trans-RuCl4(dmso-S)(dmtp)], were synthesized. The hydrolyses of 1 and 2 in water as well as in buffered solutions were studied, and the first hydrolysis product, [mer-RuCl3(H2O)(dmso-S)(dmtp)].H2O (3), was isolated and characterized. The molecular structures of 1 and 3 were determined by single-crystal X-ray diffraction analyses and prove the importance of the hydrogen-bonding properties of dmtp to stabilize hydrolysis products. In vitro 1 (a) is not cytotoxic on tumor cells, following challenges from 1 to 72 h and concentrations up to 100 microM, (b) inhibits matrigel invasion at 0.1 mM and MMP-9 activity with an IC50 of about 1 mM, and (c) is devoid of pronounced effects on cell distribution among cell cycle phases. In vivo compound 1, similar to NAMI-A, significantly inhibits metastasis growth in mice bearing advanced MCa mammary carcinoma tumors. In the lungs, 1 is significantly less concentrated than NAMI-A, whereas no differences between these two compounds were found in other organs such as tumor, liver, and kidney. However, 1 caused edema and necrotic areas on liver parenchyma that are more pronounced than those caused by NAMI-A. Conversely, glomerular and tubular changes on kidney are less extensive than with NAMI-A. In conclusion, 1 confirms the excellent antimetastatic properties of this class of NAMI-A-type compounds and qualifies as an interesting alternative to NAMI-A for treating human cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.