Summary Multinuclear platinum compounds were rationally designed to bind to DNA in a different manner from that of cisplatin and its mononuclear analogues. A triplatinum compound of the series (BBR 3464) was selected for preclinical development, since, in spite of its charged nature, it was very potent as cytotoxic agent and effective against cisplatin-resistant tumour cells. Anti-tumour efficacy studies were performed in a panel of human tumour xenografts refractory or poorly responsive to cisplatin. The novel platinum compound exhibited efficacy in all tested tumours and an impressive efficacy (including complete tumour regressions) was displayed in two lung carcinoma models, CaLu-3 and POCS. Surprisingly, BBR 3464 showed a superior activity against p53-mutant tumours as compared to those carrying the wild-type gene. The involvement of p53 in tumour response was investigated in an osteosarcoma cell line, SAOS, which is null for p53 and is highly sensitive to BBR 3464, and in the same cells following introduction of the wild-type p53 gene. Thus the pattern of cellular response was investigated in a panel of human tumour cells with a different p53 gene status. The results showed that the transfer of functional p53 resulted in a marked (tenfold) reduction of cellular chemosensitivity to the multinuclear platinum complex but in a moderate sensitization to cisplatin. In addition, in contrast to cisplatin, the triplatinum complex was very effective as an inducer of apoptosis in a lung carcinoma cell line carrying mutant p53. The peculiar pattern of anti-tumour activity of the triplatinum complex and its ability to induce p53-independent cell death may have relevant pharmacological implications, since p53, a critical protein involved in DNA repair and induction of apoptosis by conventional DNA-damaging agents, is defective in several human tumours. We suggest that the peculiar DNA binding properties of the triplatinum complex may contribute to the striking profile of anti-tumour efficacy. Taken together, the available information supports that anti-tumour activity of the novel compound is mediated by a mechanism different from that of conventional platinum complexes, and compounds of this series could represent a new class of promising anti-tumour agents.
Since apoptosis is the primary mode of cell death induced by cisplatin, the role of apoptosis and apoptosis-related gene products in cisplatin resistance was investigated in four human cisplatin-resistant cell lines of different tumour type. A common feature of the resistant sublines was a reduced susceptibility to drug-induced apoptosis compared to parental sensitive lines. Loss of wild-type p53 function was not a general event associated with the development of drug resistance. An increased bcl-2 expression was found in resistant cells characterized by mutant p53 (A431/Pt and IGROV-1/Pt), whereas in osteosarcoma (U2-OS/Pt) and in ovarian carcinoma (A2780/CP) cells with wild-type p53, bcl-2 levels were markedly reduced. U2-OS/Pt cells had a 16-fold increase in the level of Bcl-xL protein. Stable transfection of U2-OS cells with bcl-xL cDNA conferred a low level of drug resistance to cisplatin, suggesting that overexpression of this gene contributes to the cisplatin-resistant phenotype of this osteosarcoma cell system. In conclusion, these observations suggest a variable contribution of apoptosis-related genes to cisplatin resistance depending on the biological background of the cell system and presumably reflecting different pathways of apoptosis.
The high antitumor activity of MEN 10755 in human tumor xenografts, including doxorubicin-resistant xenografts, and its unique pharmacologic and biologic properties make this disaccharide analogue a promising candidate for clinical evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.