: The analysis of forces, moments and pressure points has long been of great interest in orthodontics. Hence, we set out to define a method for measuring the pressure exerted by aligners on the teeth, and specifically to identify the precise points of pressure exertion. Intraoral scans were performed on a patient with optimal alignment and levelling before and after 2º vestibularisation of the upper central incisor. Pressure sensor film was placed in a dedicated housing between the aligner and teeth in order to record the pressure exerted after 15 s of aligner application. The images captured by the film were scanned, digitised, and subsequently analysed. Areas and amounts of pressure generated by the aligners were evaluated, and the net force of each was calculated, adjusted to take into consideration passive values. The method revealed the areas of contact by which the aligner transmits force on the teeth, and the pressures at which it does so. The pressure exerted by an aligner is not evenly distributed across the entire surface of the tooth during lingual tipping of an upper incisor. The areas of force concentration were not identical, as these are influenced by factors resulting from the manufacturing and casting processes.
Invisible aligners are medical devices, which allow repositioning of teeth through a treatment designed by the orthodontists. During this orthodontic treatment, patients use several aligners each for a couple of weeks. The aligner will apply a system of forces on the teeth to shift them to desired position. Since aligners exert forces thanks to their particular shape, it is important that during lifetime's service they do not undergo significant deformations. This research aims to study the mechanical behavior of invisible aligners made by polyethylene terephthalate-glycol (PET-G), which is one of most used the plastic materials to produce such devices. In this study, cyclic compression tests in atmospheric environment (∼25 • C) as well as in the presence of saliva (to simulate intraoral environment) were performed. The mechanical behavior of aligners with two different thicknesses (0.75 and 0.88 mm) was studied. In particular, each aligner was subjected to 22500 load cycles from 0 to 50 N. The chosen number of load cycles simulates the average load history to which an aligner is subjected during its lifetime. The tests were performed on a testing machine, using a hard resin dental cast properly fixed to the machine. Analysis of the results shows that the stiffness of the aligners increases during the cyclic test. In particular, a gradual reduction of the crosshead displacement was observed during the test, highlighting the occurrence of cyclic hardening phenomena. It was also found that the aligners show a residual strain recovery after removing the applied load. Moreover, in the analyzed range of load rate, the aligners show a low tendency to accumulate residual strains as loading cycles progress.
Background: The rife use of aesthetic appliance in orthodontic treatment requires the study of the properties of the materials they are made of. Objective: The aim of the present study was to evaluate the dimensional stability of clear aligners made of three different materials after the application of in-vivo dynamic stress and in-vitro static stress. Methods: Three different aligners made of different materials (PET-G; PET; SmartTrack®), prepared on the dental arch of the same patient, were tested. For each material, three aligner samples were manufactured: one to be used in-vivo, one to be tested in-vitro, and one to be used as a control. To evaluate the effects of the dynamic stress produced in-vivo, each aligner was worn by a single patient 22 hours per day, followed by a wash-out period of two weeks. To evaluate the effects of static stress, each aligner was exposed to the in-vitro continuous force of 50N. The tested and control aligners were scanned, then linear measurements were taken to evaluate their dimensional stability after different types of stresses. Results: PET seems to have the lowest percentage of deformation; PET-G and SmartTrack® showed a reduced deformation going from the posterior to the anterior area. The contact with human saliva induces a greater deformation. Conclusion: Different materials show different behavior following application of static stresses and dynamic stresses in the oral cavity. PET showed the highest dimensional stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.