Effective and economical mycobactericidal disinfectants are needed to kill both Mycobacterium tuberculosis and non-M. tuberculosis mycobacteria. We found that acetic acid (vinegar) efficiently kills M. tuberculosis after 30 min of exposure to a 6% acetic acid solution. The activity is not due to pH alone, and propionic acid also appears to be bactericidal. M. bolletii and M. massiliense nontuberculous mycobacteria were more resistant, although a 30-min exposure to 10% acetic acid resulted in at least a 6-log10 reduction of viable bacteria. Acetic acid (vinegar) is an effective mycobactericidal disinfectant that should also be active against most other bacteria. These findings are consistent with and extend the results of studies performed in the early and mid-20th century on the disinfectant capacity of organic acids.IMPORTANCE Mycobacteria are best known for causing tuberculosis and leprosy, but infections with nontuberculous mycobacteria are an increasing problem after surgical or cosmetic procedures or in the lungs of cystic fibrosis and immunosuppressed patients. Killing mycobacteria is important because Mycobacterium tuberculosis strains can be multidrug resistant and therefore potentially fatal biohazards, and environmental mycobacteria must be thoroughly eliminated from surgical implements and respiratory equipment. Currently used mycobactericidal disinfectants can be toxic, unstable, and expensive. We fortuitously found that acetic acid kills mycobacteria and then showed that it is an effective mycobactericidal agent, even against the very resistant, clinically important Mycobacterium abscessus complex. Vinegar has been used for thousands of years as a common disinfectant, and if it can kill mycobacteria, the most disinfectant-resistant bacteria, it may prove to be a broadly effective, economical biocide with potential usefulness in health care settings and laboratories, especially in resource-poor countries.
BackgroundNon-tuberculous mycobacteria (NTM) are increasingly important as opportunistic infections after major and minor surgical procedures, likely because they are ubiquitous and not effectively killed by many commonly used disinfectants. Outbreaks of soft tissue infections with NTM appeared related to the use of commercial disinfectants based on quaternary ammonium compounds (QACs).MethodsWe studied the survival of clinical and environmental isolates of Mycobacterium abscessus, Mycobacterium massiliense, Mycobacterium chelonae and Mycobacterium fortuitum after 20 min, 60 min or 24 h exposures to different QACs, and the surviving bacteria were then re-exposed to QACs to see if the percentage of surviving bacteria had increased. The bacteria were labelled with a dnaA–gfp fusion and their level of QAC resistance monitored as increasing fluorescence. The QAC-resistant bacteria were then serially restreaked onto non-selective medium and retested for QAC survival.ResultsThe frequency of survivors was <1 in 105 bacteria with Mycobacterium smegmatis, but >1 in 100 with the other mycobacteria studied. Different environmental and clinical isolates had similar QAC MICs, but QAC survivors of each strain were resistant. The QAC-surviving strains reverted to the original, non-resistant phenotype after several passages on non-selective medium.ConclusionsQACs should not be used in settings where even minimally invasive procedures are performed, as they select for a non-genetically determined reversible resistant phenotype that appears at high frequency with several rapidly growing mycobacterial species associated with healthcare-related infections. M. smegmatis behaves differently and is not an adequate model for testing the activity of disinfectants against NTM.
Although infections with NonTuberculous Mycobacteria have become less common in AIDS patients, they are important opportunistic infections after surgical procedures, likely because they are ubiquitous and not efficiently killed by many commonly used disinfectants. In Venezuela there have recently been many non-tuberculous mycobacteria soft tissue infections after minor surgical procedures, some apparently related to the use of a commercial disinfectant based on a Quaternary Ammonium Compound. We studied the activity of this and other quaternary ammonium compounds on different non-tuberculous mycobacteria by transforming the mycobacteria with a dnaA-gfp fusion and then monitoring fluorescence to gauge the capacity of different quaternary ammonium compounds to inhibit bacterial growth. The minimum inhibitory concentration varied for the different quaternary ammonium compounds, but M. chelonae and M. abscessus were consistently more resistant than M. smegmatis, and M. terrae more resistant than M. bovis BCG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.