One of the main animal health problems in tropical and subtropical cattle production is the bovine tick, which causes decreased performance, hide devaluation, increased production costs with acaricide treatments, and transmission of infectious diseases. This study investigated the utility of genomic prediction as a tool to select Braford (BO) and Hereford (HH) cattle resistant to ticks. The accuracy and bias of different methods for direct and blended genomic prediction was assessed using 10,673 tick counts obtained from 3,435 BO and 928 HH cattle belonging to the Delta G Connection breeding program. A subset of 2,803 BO and 652 HH samples were genotyped and 41,045 markers remained after quality control. Log transformed records were adjusted by a pedigree repeatability model to estimate variance components, genetic parameters, and breeding values (EBV) and subsequently used to obtain deregressed EBV. Estimated heritability and repeatability for tick counts were 0.19 ± 0.03 and 0.29 ± 0.01, respectively. Data were split into 5 subsets using k-means and random clustering for cross-validation of genomic predictions. Depending on the method, direct genomic value (DGV) prediction accuracies ranged from 0.35 with Bayes least absolute shrinkage and selection operator (LASSO) to 0.39 with BayesB for k-means clustering and between 0.42 with BayesLASSO and 0.45 with BayesC for random clustering. All genomic methods were superior to pedigree BLUP (PBLUP) accuracies of 0.26 for k-means and 0.29 for random groups, with highest accuracy gains obtained with BayesB (39%) for k-means and BayesC (55%) for random groups. Blending of historical phenotypic and pedigree information by different methods further increased DGV accuracies by values between 0.03 and 0.05 for direct prediction methods. However, highest accuracy was observed with single-step genomic BLUP with values of 0.48 for -means and 0.56, which represent, respectively, 84 and 93% improvement over PBLUP. Observed random clustering cross-validation breed-specific accuracies ranged between 0.29 and 0.36 for HH and between 0.55 and 0.61 for BO, depending on the blending method. These moderately high values for BO demonstrate that genomic predictions could be used as a practical tool to improve genetic resistance to ticks and in the development of resistant lines of this breed. For HH, accuracies are still in the low to moderate side and this breed training population needs to be increased before genomic selection could be reliably applied to improve tick resistance.
BackgroundCattle resistance to ticks is known to be under genetic control with a complex biological mechanism within and among breeds. Our aim was to identify genomic segments and tag single nucleotide polymorphisms (SNPs) associated with tick-resistance in Hereford and Braford cattle. The predictive performance of a very low-density tag SNP panel was estimated and compared with results obtained with a 50 K SNP dataset.ResultsBayesB (π = 0.99) was initially applied in a genome-wide association study (GWAS) for this complex trait by using deregressed estimated breeding values for tick counts and 41,045 SNP genotypes from 3455 animals raised in southern Brazil. To estimate the combined effect of a genomic region that is potentially associated with quantitative trait loci (QTL), 2519 non-overlapping 1-Mb windows that varied in SNP number were defined, with the top 48 windows including 914 SNPs and explaining more than 20% of the estimated genetic variance for tick resistance. Subsequently, the most informative SNPs were selected based on Bayesian parameters (model frequency and t-like statistics), linkage disequilibrium and minor allele frequency to propose a very low-density 58-SNP panel. Some of these tag SNPs mapped close to or within genes and pseudogenes that are functionally related to tick resistance. Prediction ability of this SNP panel was investigated by cross-validation using K-means and random clustering and a BayesA model to predict direct genomic values. Accuracies from these cross-validations were 0.27 ± 0.09 and 0.30 ± 0.09 for the K-means and random clustering groups, respectively, compared to respective values of 0.37 ± 0.08 and 0.43 ± 0.08 when using all 41,045 SNPs and BayesB with π = 0.99, or of 0.28 ± 0.07 and 0.40 ± 0.08 with π = 0.999.ConclusionsBayesian GWAS model parameters can be used to select tag SNPs for a very low-density panel, which will include SNPs that are potentially linked to functional genes. It can be useful for cost-effective genomic selection tools, when one or a few key complex traits are of interest.Electronic supplementary materialThe online version of this article (doi:10.1186/s12711-017-0325-2) contains supplementary material, which is available to authorized users.
Very few studies have been conducted to infer genotype × environment interaction (G×E) based in genomic prediction models using SNP markers. Therefore, our main objective was to compare a conventional genomic-based single-step model (HBLUP) with its reaction norm model extension (genomic 1-step linear reaction norm model [HLRNM]) to provide EBV for tick resistance as well as to compare predictive performance of these models with counterpart models that ignore SNP marker information, that is, a linear animal model (ABLUP) and its reaction norm extension (1-step linear reaction norm model [ALRNM]). Phenotypes included 10,673 tick counts on 4,363 Hereford and Braford animals, of which 3,591 were genotyped. Using the deviance information criterion for model choice, ABLUP and HBLUP seemed to be poorer fitting in comparison with their respective genomic model extensions. The HLRNM estimated lower average and reaction norm genetic variability compared with the ALRNM, whereas ABLUP and HBLUP seemed to be poorer fitting in comparison with their respective genomic reaction norm model extensions. Heritability and repeatability estimates varied along the environmental gradient (EG) and the genetic correlations were remarkably low between high and low EG, indicating the presence of G×E for tick resistance in these populations. Based on 5-fold -means partitioning, mean cross-validation estimates with their respective SE of predictive accuracy were 0.66 (SE 0.02), 0.67 (SE 0.02), 0.67 (SE 0.02), and 0.66 (SE 0.02) for ABLUP, HBLUP, HLRNM, and ALRNM, respectively. For 5-fold random partitioning, HLRNM (0.71 ± 0.01) was statistically different from ABLUP (0.67 ± 0.01). However, no statistical significance was reported when considering HBLUP (0.70 ± 0.01) and ALRNM (0.70 ± 0.01). Our results suggest that SNP marker information does not lead to higher prediction accuracies in reaction norm models. Furthermore, these accuracies decreased as the tick infestation level increased and as the relationship between animals in training and validation data sets decreased.
Genomic prediction has become the new standard for genetic improvement programs, and currently, there is a desire to implement this technology for the evaluation of Angus cattle in Brazil. Thus, the main objective of this study was to assess the feasibility of evaluating young Brazilian Angus (BA) bulls and heifers for 12 routinely recorded traits using single-step genomic BLUP (ssGBLUP) with and without genotypes from American Angus (AA) sires. The second objective was to obtain estimates of effective population size (Ne) and linkage disequilibrium (LD) in the Brazilian Angus population. The dataset contained phenotypic information for up to 277,661 animals belonging to the Promebo® breeding program, pedigree for 362,900, of which 1,386 were genotyped for 50k, 77k, and 150k SNP panels. After imputation and quality control, 61,666 SNP were available for the analyses. In addition, genotypes from 332 American Angus (AA) sires widely used in Brazil were retrieved from the AA Association database to be used for genomic predictions. Bivariate animal models were used to estimate variance components, traditional EBV, and genomic EBV (GEBV). Validation was carried out with the linear regression method (LR) using young-genotyped animals born between 2013 and 2015 without phenotypes in the reduced dataset and with records in the complete dataset. Validation animals were further split into progeny of BA and AA sires to evaluate if their progenies would benefit by including genotypes from AA sires. The Ne was 254 based on pedigree and 197 based on LD, and the average LD (±SD) and distance between adjacent SNPs across all chromosomes was 0.27 (±0.27) and 40743.68 bp, respectively. Prediction accuracies with ssGBLUP outperformed BLUP for all traits, improving accuracies by, on average, 16% for BA young bulls and heifers. The GEBV prediction accuracies ranged from 0.37 (total maternal for weaning weight and tick count) to 0.54 (yearling precocity) across all traits, and dispersion (LR coefficients) fluctuated between 0.92 and 1.06. Inclusion of genotyped sires from the AA improved GEBV accuracies by 2%, on average, compared to using only the BA reference population. Our study indicated that genomic information could help to improve GEBV accuracies and hence genetic progress in the Brazilian Angus population. The inclusion of genotypes from American Angus sires heavily used in Brazil just marginally increased the GEBV accuracies for selection candidates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.