Several ribonucleases serve as cytotoxic agents in host defense and in physiological cell death pathways. Although certain members of the pancreatic ribonuclease A superfamily can be toxic when applied to the outside of cells, they become thousands of times more toxic when artificially introduced into the cytosol, indicating that internalization is the rate-limiting step for cytotoxicity. We have used three agents that disrupt the Golgi apparatus by distinct mechanisms, retinoic acid, brefeldin A, and monensin, to probe the intracellular pathways ribonucleases take to reach the cytosol. Retinoic acid and monensin potentiate the cytotoxicity of bovine seminal RNase, Onconase, angiogenin, and human ribonuclease A 100 times or more. Retinoic acid-mediated potentiation of ribonucleases is completely blocked by brefeldin A. Ribonucleases appear to route more efficiently into the cytosol through the Golgi apparatus disrupted by monensin or retinoic acid. Intracellular RNA degradation by BS-RNase increased more than 100 times in the presence of retinoic acid confirming that the RNase reaches the cytosol and indicating that degradation of RNA is the intracellular lesion causing toxicity. As retinoic acid alone and Onconase are in clinical trials for cancer therapy, combinations of RNases and retinoic acid in vivo may offer new clinical utility.
Immune checkpoints are emerging as novel targets for cancer therapy, and antibodies against them have shown remarkable clinical efficacy with potential for combination treatments to achieve high therapeutic index. This work aims at providing a novel approach for the generation of several novel human immunomodulatory antibodies capable of binding their targets in their native conformation and useful for therapeutic applications.We performed a massive parallel screening of phage libraries by using for the first time activated human lymphocytes to generate large collections of single-chain variable fragments (scFvs) against 10 different immune checkpoints: LAG-3, PD-L1, PD-1, TIM3, BTLA, TIGIT, OX40, 4-1BB, CD27 and ICOS. By next-generation sequencing and bioinformatics analysis we ranked individual scFvs in each collection and identified those with the highest level of enrichment.As a proof of concept of the quality/potency of the binders identified by this approach, human IgGs from three of these collections (i.e., PD-1, PD-L1 and LAG-3) were generated and shown to have comparable or better binding affinity and biological activity than the clinically validated anti-PD-1 mAb nivolumab.The repertoires generated in this work represent a convenient source of agonistic or antagonistic antibodies against the ‘Checkpoint Immunome’ for preclinical screening and clinical implementation of optimized treatments.
AIMS: Doxorubicin is widely used against cancer; however, it can produce heart failure (HF). Among other hallmarks, oxidative stress is a major contributor to HF pathophysiology. The late INa inhibitor ranolazine has proven effective in treating experimental HF. Since elevated [Na+ ]i is present in failing myocytes, and has been recently linked with reactive oxygen species (ROS) production, our aim was to assess whether ranolazine prevents doxorubicin-induced cardiotoxicity, and whether blunted oxidative stress is a mechanism accounting for such protection.\ud \ud METHODS AND RESULT: In C57BL6 mice, doxorubicin treatment for 7 days produced LV dilation and decreased echo-measured fractional shortening (FS). Ranolazine (305 mg/kg/day) prevented LV dilation and dysfunction when co-administered with doxorubicin. Doxorubicin-induced cardiotoxicity was accompanied instead by elevations in atrial natriuretic peptide (ANP), BNP, connective tissue growth factor (CTGF), and matrix metalloproteinase 2 (MMP2) mRNAs, which were not elevated on co-treatment with ranolazine. Alterations in extracellular matrix remodelling were confirmed by an increase in interstitial collagen, which did not rise in ranolazine-co-treated hearts. Levels of poly(ADP-ribose) polymerase (PARP) and pro-caspase-3 measured by western blotting were lowered with doxorubicin, with increased cleavage of caspase-3, indicating activation of the proapoptotic machinery. Again, ranolazine prevented this activation. Furthermore, in HL-1 cardiomyocytes transfected with HyPer to monitor H2 O2 emission, besides reducing the extent of cell death, ranolazine prevented the occurrence of oxidative stress caused by doxorubicin. Interestingly, similar protective results were obtained with the Na+ /Ca2+ exchanger (NCX) inhibitor KB-R7943.\ud \ud CONCLUSIONS: Ranolazine protects against experimental doxorubicin cardiotoxicity. Such protection is accompanied by a reduction in oxidative stress, suggesting that INa modulates cardiac redox balance, resulting in functional and morphological derangements
Monomeric human pancreatic RNase, devoid of any biological activity other than its RNA degrading ability, was engineered into a dimeric protein with a cytotoxic action on mouse and human tumor cells, but lacking any appreciable toxicity on mouse and human normal cells. This dimeric variant of human pancreas RNase selectively sensitizes to apoptotic death cells derived from a human thyroid tumor. Because of its selectivity for tumor cells, and because of its human origin, this protein represents a potentially very attractive, novel tool for anticancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.