a b s t r a c tEconomic uncertainties and environmental constraints regarding fossil fuels have encouraged initiatives for renewable energy sources and assessment of their life cycle impacts. Brazil ranks second worldwide in biodiesel production, despite the relatively recent organization of its national chain, marked by the creation of the National Program for Biodiesel Production and Use (PNPB). The Central-West region is responsible for the largest share of biodiesel production (44.4%) and the largest cattle slaughter (37.5%). In this scenario, beef tallow has great potential for expansion of biodiesel production, since it is a byproduct of the chain that, when not properly disposed, presents a considerable environmental burden. This work presents a method for assessing environmental performance that integrates life cycle assessment (LCA) with land use change (LUC) for analysis of the tallow biodiesel production chain. The results are given in terms of increment in annual greenhouse gases (GHG) emissions per hectare related to local tallow biodiesel. The system's boundary covers a representative major cattle farming area in Central-West Brazil. For the LCA segment of the method, five inventory allocations were considered: (i) without allocation, (ii) mass, (iii) market value, (iv) energy and (v) an "average allocation", calculated as the mean of mass, market value and energy. The last one is a novel approach proposed in this work, aggregating all the others, which separately result in under or over estimation of impacts. Using the "average allocation", the increment in annual GHG emission per hectare from tallow biodiesel production, is 43.2 kg CO 2 eq ha À1 y À1 . This value is 17% less than the emission increment due to soybean biodiesel (50.2 kg CO 2 eq ha À1 y À1 ). LUC is responsible for 96% of the emission assessed, which demonstrates the importance of including LUC assessment in life cycle assessment of tallow biodiesel. According to the sensitivity analyses performed, changes from crop to pasture have superior environmental performance among the investigated options. Land use management is essential to preserve the remaining natural areas, making tallow biodiesel more sustainable.
This paper presents a risk evaluation and estimation methodology used for health, safety and environmental management prioritization strategies. Two case studies are presented and discussed throughout the usage of the Hazard Matrix. The Hazard Matrix is a risk management tool that promotes an organization's global health and safety at work evaluation. Workers, plant sectors and the work flow are interrelated and the exposure to hazards and environmental agents are evaluated and estimated. Analysis and discussion of the application contribute to the risk management process and determine loss prevention investments. Two cases allow an enhanced comprehension of the model. Discussion on the model adequacy and comprehensiveness of a qualitative / quantitative approach to prioritize risk management investment are also addressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.