The development and behavior of million yearscaled depositional sequences recorded within Palaeozoic carbonate platform has remained poorly examined. Therefore, the understanding of palaeoenvironmental changes that occur in geological past is still limited. We herein undertake a multi-disciplinary approach (sedimentology, conodont biostratigraphy, magnetic susceptibility (MS), and geochemistry) of a long-term succession in the Carnic Alps, which offers new insights into the peculiar evolution of one of the best example of Palaeozoic carbonate platform in Europe. The Freikofel section, located in the central part of the Carnic Alps, represents an outstanding succession in a fore-reef setting, extending from the Latest Givetian (indet. falsiovalis conodont zones) to the Early Famennian (Lower crepida conodont zone). Sedimentological analysis allowed to propose a sedimentary model dominated by distal slope and fore-reef-slope deposits. The most distal setting is characterized by an autochthonous pelagic sedimentation showing local occurrence of thin-bedded turbiditic deposits. In the fore-reef slope, in a more proximal setting, there is an accumulation of various autochthonous and allochthonous fine-to coarse-grained sediments originated from the interplay of gravity-flow currents derived from the shallow-water and deepwater area. The temporal evolution of microfacies in the Freikofel section evolves in two main steps corresponding to the Freikofel (Unit 1) and the Pal (Unit 2) limestones. Distal slope to fore-reef lithologies and associate changes are from base to top of the section: (U1) thick bedded litho-and bioclastic breccia beds with local fining upward sequence and fine-grained mudstone intercalations corresponding, in the fore-reef setting, to the dismantlement of the Eifelian-Frasnian carbonate platform during the Early to Late Frasnian time (falsiovalis to rhenana superzones) with one of the causes being the Late Givetian major rift pulse; (U2) occurrence of thinbedded red nodular and cephalopod-bearing limestones with local lithoclastic grainstone intercalations corresponding to a significant deepening of the area and the progressive withdrawal of sedimentary influxes toward the basin, in relation with Late Frasnian sea-level rise. MS and geochemical analyses were also performed along the Freikofel section and demonstrate the inherent parallel link existing between variation in MS values and proxy for terrestrial input. Interpretation of MS in terms of palaeoenvironmental processes reflects that even though distality
The Carboniferous is characterized by drastic climatic and environmental fluctuations, which include multiple phases of glaciation resulting in an icehouse climate. Additionally, dynamic continental reconfigurations forced the contraction of the Rheic Ocean resulting in the closure of the Rheic-Tethyan Gateway, which precluded further faunal exchanges between the North American and Eurasian marine realms. Interestingly, cartilaginous fishes seem to be relatively immune to these drastic climatic and environmental changes. The Eurasian fossil record of Paleozoic sharks is strongly biased towards intensively sampled localities from England, Ireland, Scotland, and the Russian Platform. Here we present rare dental material from the Serpukhovian (early Carboniferous) of Austria, adding new information to the paleogeographic distribution of ctenacanthiform sharks. The new material revealed the first record of the genus Saivodus in Central Europe and allowed us to recognize a new species, Cladodus gailensis sp. nov., and a remnant of fossilized cartilage. In an attempt to identify possible linkages between climatic or environmental fluctuations on shark diversity throughout the Carboniferous, we provide a synopsis of the distribution and diversity of elasmobranchs based on primary literature. This preliminary assessment at genus level indicates two pronounced events of extinction, with the first one occurring during the latest Mississippian and the second one towards the end of the Pennsylvanian. The first extinction event distinctly correlates with the known diversity decline of other marine inhabitants and the second occurred during an unstable period of multiple phases of glaciation.
The Late Silurian to Early Devonian palaeogeography and the question whether there has been a large and deep Rheic Ocean between Laurussia and Gondwana is still a matter of discussion. It has been assumed in many papers that the Rheic Ocean formed a palaeogeographical barrier and, therefore, Gondwana had no common beyrichioidean ostracode faunas with Laurussia before the Emsian. The appearance of ostracodes (particularly the beyrichioideans) in Gondwana at this time should testify the closure of the Rheic Ocean. Although some palaeogeographic reconstructions consider common ostracodes in Laurussia and the Perigondwanan areas Armorica and Perunica in the Lochkovian, they do not refer to occurrences in Gondwana. However, several publications describe late Silurian to Pragian beyrichioideans from Gondwana and adjoined Terranes (Perigondwana), thus questioning the existence of the Rheic Ocean at this time. This paper aims to summarize the occurrences of common beyrichioidean ostracodes from (Peri-)Gondwana and Laurussia in an attempt to provide a reliable data source for future work. The occurrences of beyrichioideans from North Africa, South America, southeastern Turkey, Ibero-Armorica, and the Ossa Morena Zone (Spain) are reviewed and their ages are partially re-dated through correlation with other faunas. The presented results indicate that shallow marine migration paths must have existed, thus strengthening the arguments against the Rheic Ocean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.