1. The drastic insect decline has received increasing attention in scientific as well as in public media. Long-term studies of insect diversity trends are still rare, even though such studies are highly important to assess extent, drivers and potential consequences of insect loss in ecosystems.2. To gain insights into carabid diversity trends of ancient and sustainably managed woodlands, we analysed data of carabid beetles from a trapping study that has been run for 24 years in an old nature reserve of Northern Germany, the L€ uneburg Heath. We examined temporal changes in several diversity measures (e.g. biomass, species richness, functional diversity and phylogenetic diversity) and tested diverse species traits as predictor variables for species occurrence.3. In contrast to recently published long-term studies of insect diversity, we did not observe a decline in biomass, but in species richness and phylogenetic diversity in carabids at our study site. Additionally, hibernation stage predicted the occurrence probability of carabids: Species hibernating as imagines or both imagines and larvae and breeding in spring showed strongest declines.4. We assume the detected trends to be the result of external effects such as climate change and the application of pesticides in the surrounding. Our results suggest that the drivers for the insect decline and the responses are multifaceted. This highlights the importance of long-term studies with identification of the catches to, at best, species level to support the understanding of mechanisms driving changes in insect diversity and abundance.
Along with the global decline of species richness goes a loss of ecological traits. Associated biotic homogenization of animal communities and narrowing of trait diversity threaten ecosystem functioning and human well-being. High management intensity is regarded as an important ecological filter, eliminating species that lack suitable adaptations. Below-ground arthropods are assumed to be less sensitive to such effects than above-ground arthropods. Here, we compared the impact of management intensity between (grassland vs. forest) and within land-use types (local management intensity) on the trait diversity and composition in below- and above-ground arthropod communities. We used data on 722 arthropod species living above-ground (Auchenorrhyncha and Heteroptera), primarily in soil (Chilopoda and Oribatida) or at the interface (Araneae and Carabidae). Our results show that trait diversity of arthropod communities is not primarily reduced by intense local land use, but is rather affected by differences between land-use types. Communities of Auchenorrhyncha and Chilopoda had significantly lower trait diversity in grassland habitats as compared to forests. Carabidae showed the opposite pattern with higher trait diversity in grasslands. Grasslands had a lower proportion of large Auchenorrhyncha and Carabidae individuals, whereas Chilopoda and Heteroptera individuals were larger in grasslands. Body size decreased with land-use intensity across taxa, but only in grasslands. The proportion of individuals with low mobility declined with land-use intensity in Araneae and Auchenorrhyncha, but increased in Chilopoda and grassland Heteroptera. The proportion of carnivorous individuals increased with land-use intensity in Heteroptera in forests and in Oribatida and Carabidae in grasslands. Our results suggest that gradients in management intensity across land-use types will not generally reduce trait diversity in multiple taxa, but will exert strong trait filtering within individual taxa. The observed patterns for trait filtering in individual taxa are not related to major classifications into above- and below-ground species. Instead, ecologically different taxa resembled each other in their trait diversity and compositional responses to land-use differences. These previously undescribed patterns offer an opportunity to develop management strategies for the conservation of trait diversity across taxonomic groups in permanent grassland and forest habitats.
Research into large‐scale ecological rules has a long tradition but has received increasing attention over the last two decades. Whereas environmental, especially climatic, influences on the geographic distribution of species traits such as body size are well understood in mammals and birds, our knowledge of the determinants and mechanisms which shape spatial patterns in invertebrate traits is still limited. This study analyzes macroecological patterns in two traits of the highly diverse invertebrate taxon of carabid beetles: body size and hind wing development, the latter being directly linked to species’ dispersal abilities. We tested for potential impacts of environmental variables (spatial, areal, topographic and climate‐related) representing both contemporary conditions and historical processes on large‐scale patterns in the two traits. Regression models revealed hump‐shaped relationships with latitude for both traits in the categories 1) all species, 2) widespread and 3) endemic (restricted‐range) species: body size and the proportion of flightless species increased from northern towards southern Europe and then decreased towards North Africa. The shared and independent influence of environmental factors was analyzed by variation partitioning. While contemporary environmental productivity and stability (represented by measures of ambient energy and water energy balance) had strong positive relationships with carabid body size, patterns in hind wing development were most notably influenced by topography (elevation range). Regions with high elevation range and low historical climate variability (since the last ice age), which likely offer long‐term stable habitats (i.e. glacial refugia), coincide with regions with high proportions of flightless species. Thus geographic patterns in carabid traits tend to be formed not only by recent climate but also by dispersal and historical climate and processes (i.e. glaciations and postglacial colonization).
Classical glacial refugia such as the southern European peninsulas were important for species survival during glacial periods and acted as sources of post-glacial colonisation processes. Only recently, some studies have provided evidence for glacial refugia north of the southern European peninsulas. In the present study, we combined species distribution models (SDMs) with phylogeographic analyses (using mitochondrial DNA = mtDNA) to investigate if the cold-adapted, stenotopic and flightless ground beetle species, Carabus irregularis, survived the Last Glacial Maximum (LGM) in classical and/or other refugia. SDMs (for both a western European and for a Carpathian subgroup) were calculated with MAXENT on the basis of 645 species records to predict current and past distribution patterns. Two mtDNA loci (CO1 and ND5, concatenated sequence length: 1785 bp) were analyzed from 91 C. irregularis specimens to reconstruct the phylogeography of Central and eastern European populations and to estimate divergence times of the given lineages. Strong intra-specific genetic differentiation (inter-clade ΦST values ranged from 0.92 to 0.99) implied long-term isolation of major clades and subsclades. The high divergence between the nominate subspecies and the Carpathian subspecies C. i. montandoni points to two independent species rather than subspecies (K-2P distance 0.042 ± 0.004; supposed divergence of the maternal lineages dated back 1.6 to 2.5 million years BP) differing not only morphologically but also genetically and ecologically from each other. The SDMs also inferred classical as well as other refugia for C. irregularis, especially north of the Alps, in southeastern Europe and in the Carpathians. The coincidences between the results of both methods confirm the assumption of multiple glacial refugia for the studied species and the usefulness of combining methodological approaches for the understanding of the history of low-dispersal insect species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.