Traumatic spinal cord injury (SCI) has devastating consequences for the physical, social and vocational well-being of patients. The demographic of SCIs is shifting such that an increasing proportion of older individuals are being affected. Pathophysiologically, the initial mechanical trauma (the primary injury) permeabilizes neurons and glia and initiates a secondary injury cascade that leads to progressive cell death and spinal cord damage over the subsequent weeks. Over time, the lesion remodels and is composed of cystic cavitations and a glial scar, both of which potently inhibit regeneration. Several animal models and complementary behavioural tests of SCI have been developed to mimic this pathological process and form the basis for the development of preclinical and translational neuroprotective and neuroregenerative strategies. Diagnosis requires a thorough patient history, standardized neurological physical examination and radiographic imaging of the spinal cord. Following diagnosis, several interventions need to be rapidly applied, including haemodynamic monitoring in the intensive care unit, early surgical decompression, blood pressure augmentation and, potentially, the administration of methylprednisolone. Managing the complications of SCI, such as bowel and bladder dysfunction, the formation of pressure sores and infections, is key to address all facets of the patient's injury experience.
Purpose The diagnosis of low back pain pathology is generally based upon invasive image-based assessment of structural pathology, but is limited in methods to evaluate function. The accurate and robust measurement of dynamic function may assist in the diagnosis and monitoring of therapy success. Epionics SPINE is an advanced straingauge measurement technology, based on the two sensor strips SpineDMS system, which allows the non-invasive assessment of lumbar and thoraco-lumbar motion for periods of up to 24 h. The aim of this study was to examine the reliability of Epionics SPINE and to collect and compare normative data for the characterisation of spinal motion in healthy subjects. Furthermore, the identification of parameters that influence lumbar range of motion (RoM) was targeted. Methods Spinal shape was measured using Epionics SPINE in 30 asymptomatic volunteers during upright standing, as well as maximum flexion and extension, to check intra-rater reliability. Furthermore, back shape was assessed throughout repeated maximum flexion and extension movements in 429 asymptomatic volunteers in order to collect normative data of the lordosis angle and RoM in different gender and age classes. Results The lordosis angle during standing in the healthy collective measured with Epionics SPINE was 32.4°± 9.7°. Relative to this standing position, the average maximum flexion angle was 50.8°± 10.9°and the average extension angle 25.0°± 11.5°. Comparisons with X-ray and Spinal Mouse data demonstrated good agreement in static positions. Age played a larger role than gender in influencing lumbar posture and RoM. Conclusions The Epionics SPINE system allows the practical and reliable dynamic assessment of lumbar spine shape and RoM, and may therefore provide a clinical solution for the evaluation of lower back pain as well as therapy monitoring.
BackgroundInfections are the leading cause of death in the acute phase following spinal cord injury and qualify as independent risk factor for poor neurological outcome (“disease modifying factor”). The enhanced susceptibility for infections is not stringently explained by the increased risk of aspiration in tetraplegic patients, neurogenic bladder dysfunction, or by high-dose methylprednisolone treatment. Experimental and clinical pilot data suggest that spinal cord injury disrupts the balanced interplay between the central nervous system and the immune system. The primary hypothesis is that the Spinal Cord Injury-induced Immune Depression Syndrome (SCI-IDS) is 'neurogenic’ including deactivation of adaptive and innate immunity with decreased HLA-DR expression on monocytes as a key surrogate parameter. Secondary hypotheses are that the Immune Depression Syndrome is i) injury level- and ii) severity-dependent, iii) triggers transient lymphopenia, and iv) causes qualitative functional leukocyte deficits, which may endure the post-acute phase after spinal cord injury.Methods/DesignSCIentinel is a prospective, international, multicenter study aiming to recruit about 118 patients with acute spinal cord injury or control patients with acute vertebral fracture without neurological deficits scheduled for spinal surgery. The assessment points are: i) <31 hours, ii) 31–55 hours, iii) 7 days, iv) 14 days, and v) 10 weeks post-trauma. Assessment includes infections, concomitant injury, medication and neurological classification using American Spinal Injury Association impairment scale (AIS) and neurological level. Laboratory analyses comprise haematological profiling, immunophenotyping, including HLA-DR expression on monocytes, cytokines and gene expression of immune modulators. We provide an administrative interim analysis of the recruitment schedule of the trial.DiscussionThe objectives are to characterize the dysfunction of the innate and adaptive immune system after spinal cord injury and to explore its proposed 'neurogenic’ origin by analyzing its correlation with lesion height and severity. The trial protocol considers difficulties of enrolment in an acute setting, and loss to follow up. The administrative interim analysis confirmed the feasibility of the protocol. Better understanding of the SCI-IDS is crucial to reduce co-morbidities and thereby to attenuate the impact of disease modifying factors to protect neurological “outcome at risk”. This putatively results in improved spinal cord injury medical care.Trial registrationDRKS-ID: DRKS00000122 (German Clinical Trials Registry)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.