Virulence-associated type III secretion systems (T3SS) serve the injection of bacterial effector proteins into eukaryotic host cells. They are able to secrete a great diversity of substrate proteins in order to modulate host cell function, and have evolved to sense host cell contact and to inject their substrates through a translocon pore in the host cell membrane. T3SS substrates contain an N-terminal signal sequence and often a chaperone-binding domain for cognate T3SS chaperones. These signals guide the substrates to the machine where substrates are unfolded and handed over to the secretion channel formed by the transmembrane domains of the export apparatus components and by the needle filament. Secretion itself is driven by the proton motive force across the bacterial inner membrane. The needle filament measures 20–150 nm in length and is crowned by a needle tip that mediates host-cell sensing. Secretion through T3SS is a highly regulated process with early, intermediate and late substrates. A strict secretion hierarchy is required to build an injectisome capable of reaching, sensing and penetrating the host cell membrane, before host cell-acting effector proteins are deployed. Here, we review the recent progress on elucidating the assembly, structure and function of T3SS injectisomes.
The elucidation of the molecular mechanisms of secretion through bacterial protein secretion systems is impeded by a shortage of assays to quantitatively assess secretion kinetics. Also the analysis of the biological role of these secretion systems as well as the identification of inhibitors targeting these systems would greatly benefit from the availability of a simple, quick and quantitative assay to monitor principle secretion and injection into host cells. Here, we present a versatile solution to this need, utilizing the small and very bright NanoLuc luciferase to assess the function of the type III secretion system encoded by Salmonella pathogenicity island 1. Type III secretion substrate–NanoLuc fusions are readily secreted into the culture supernatant, where they can be quantified by luminometry after removal of bacteria. The NanoLuc‐based secretion assay features a very high signal‐to‐noise ratio and sensitivity down to the nanolitre scale. The assay enables monitoring of secretion kinetics and is adaptable to a high throughput screening format in 384‐well microplates. We further developed a split NanoLuc‐based assay that enables the real‐time monitoring of type III secretion‐dependent injection of effector–HiBiT fusions into host cells stably expressing the complementing NanoLuc–LgBiT.
Summary
Type III secretion injectisomes are essential virulence factors for many pathogenic bacteria by mediating the transport of effector proteins into eukaryotic host cells. The secretion conduit of injectisomes is formed by a helical assembly of three hydrophobic proteins (SctR, SctS and SctT), an inner rod (SctI) and a needle filament (SctF). SctI is thought to play a role in switching between the secretion of different substrate classes and assembly of the inner rod has been implicated in regulating the length of the needle filament. While high‐resolution structures of the hydrophobic components and of the needle filament have been solved, little is known about the structure and the assembly of the inner rod, which impedes the deeper assessment of its function. Here we show by exhaustive in vivo photocrosslinking that SctI engages in extensive interactions with SctR and SctT throughout its entire length. Our data imply that the inner rod serves as an adapter between the export apparatus and the needle filament by forming one helical turn. We show that assembly of the inner rod does not play a role in needle length control nor in substrate specificity switching. Instead, our findings imply that inner rod assembly must precede assembly of the needle filament.
Inhibition of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase enhances the neural vulnerability to excitotoxicity both in vivo and in vitro through an unknown mechanism possibly related to mitochondrial failure. However, as the effect of glycolysis inhibition on mitochondrial function in brain has not been studied, the aim of the present work was to evaluate the effect of glycolysis inhibition induced by iodoacetate on mitochondrial function and oxidative stress in brain. Mitochondria were isolated from brain cortex, striatum and cerebellum of rats treated systemically with iodoacetate (25 mg/kg/day for 3 days). Oxygen consumption, ATP synthesis, transmembrane potential, reactive oxygen species production, lipoperoxidation, glutathione levels, and aconitase activity were assessed. Oxygen consumption and aconitase activity decreased in the brain cortex and striatum, showing that glycolysis inhibition did not trigger severe mitochondrial impairment, but a slight mitochondrial malfunction and oxidative stress were present.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.