The currently observed climate warming will lead to widespread degradation of near-surface permafrost, which may release substantial amounts of inorganic nitrogen (N) into arctic ecosystems. We studied 11 soil profiles at three different sites in arctic eastern Siberia to assess the amount of inorganic N stored in arctic permafrost soils. We modelled the potential thickening of the active layer for these sites using the CryoGrid2 permafrost model and representative concentration pathways (RCPs) 4.5 (a stabilisation scenario) and 8.5 (a business as usual emission scenario, with increasing carbon emissions). The modelled increases in active-layer thickness (ALT) were used to estimate potential annual liberation of inorganic N from permafrost soils during the course of climate change. We observed significant stores of inorganic ammonium in permafrost, up to 40-fold higher than in the active layer. The modelled increase in ALT under the RCP8.5 scenario can result in substantial liberation of N, reaching values up to the order of magnitude of annual fixation of atmospheric N in arctic soils. However, the thaw-induced liberation of N represents only a small flux in comparison with the overall ecosystem N cycling.
Samples from three hot springs (Alla, Seya and Garga) located in the northeastern part of Baikal rift zone (Buryat Republic, Russia) were screened for the presence of thermophilic nitrifying bacteria. Enrichment cultures were obtained solely from the Garga spring characterized by slightly alkaline water (pH 7.9) and an outlet temperature of 75 degrees C. The enrichment cultures of the ammonia- and nitrite oxidizers grew at temperature ranges of 27-55 and 40-60 degrees C, respectively. The temperature optimum was approximately 50 degrees C for both groups and thus they can be designated as moderate thermophiles. Ammonia oxidizers were identified with classical and immunological techniques. Representatives of the genus Nitrosomonas and Nitrosospira-like bacteria with characteristic vibroid morphology were detected. The latter were characterized by an enlarged periplasmic space, which has not been previously observed in ammonia oxidizers. Electron microscopy, denaturing gradient gel electrophoresis analyses and partial 16S rRNA gene sequencing provided evidence that the nitrite oxidizers were members of the genus Nitrospira.
Abstract. Natural peatlands are important carbon sinks and sources of methane (CH 4 ). In contrast, drained peatlands turn from a carbon sink to a carbon source and potentially emit nitrous oxide (N 2 O). Rewetting of peatlands thus potentially implies climate change mitigation. However, data about the time span that is needed for the re-establishment of the carbon sink function by restoration are scarce. We therefore investigated the annual greenhouse gas (GHG) balances of three differently vegetated sites of a bog ecosystem 30 years after rewetting. All three vegetation communities turned out to be sources of carbon dioxide (CO 2 ) ranging between 0.6 ± 1.43 t CO 2 ha −2 yr −1 (Sphagnum-dominated vegetation) and 3.09 ± 3.86 t CO 2 ha −2 yr −1 (vegetation dominated by heath). While accounting for the different global warming potential (GWP) of CO 2 , CH 4 and N 2 O, the annual GHG balance was calculated. Emissions ranged between 25 and 53 t CO 2 -eq ha −1 yr −1 and were dominated by large emissions of CH 4 (22-51 t CO 2 -eq ha −1 yr −1 ), with highest rates found at purple moor grass (Molinia caerulea) stands. These are to our knowledge the highest CH 4 emissions so far reported for bog ecosystems in temperate Europe. As the restored area was subject to large fluctuations in the water table, we assume that the high CH 4 emission rates were caused by a combination of both the temporal inundation of the easily decomposable plant litter of purple moor grass and the plant-mediated transport through its tissues. In addition, as a result of the land use history, mixed soil material due to peat extraction and refilling can serve as an explanation. With regards to the long time span passed since rewetting, we note that the initial increase in CH 4 emissions due to rewetting as described in the literature is not inevitably limited to a shortterm period.
Plant growth in arctic tundra is known to be commonly limited by nitrogen. However, biogeochemical interactions between soil, vegetation and microbial biomass in arctic ecosystems are still insufficiently understood. In this study, we investigated different compartments of the soil-vegetation system of polygonal lowland tundra: bulk soil, inorganic nutrients, microbial biomass and vegetation biomass were analyzed for their contents of carbon, nitrogen, phosphorus and potassium. Samples were taken in August 2011 in the Indigirka lowlands (NE Siberia, Russia) in a detailed grid (4 m × 5 m) in one single ice-wedge polygon. We used a stoichiometric approach, based on the N/P ratios in the vegetation biomass and the investigated soil fractions, to analyze limitation relations in the soil-vegetation system. Plant growth in the investigated polygonal tundra appears to be co-limited by nitrogen and phosphorus or in some cases only limited by nitrogen whereas potassium is not limiting plant growth. However, as the N/P ratios of the microbial biomass in the uppermost soil horizons were more than twice as high as previously reported for arctic ecosystems, nitrogen mineralization and fixation may be limited at present by phosphorus. We found that only 5 % of the total nitrogen is already cycling in the biologically active fractions. On the other hand, up to 40 % of the total phosphorus was found in the biologically active fractions. Thus, there is less potential for increased phosphorus mineralization than for increased nitrogen mineralization in response to climate warming, and strict phosphorus limitation might be possible in the long-term
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.